
HttpCore Tutorial

Oleg Kalnichevski

ii

Preface .. iv

1. HttpCore Scope ... iv

2. HttpCore Goals .. iv

3. What HttpCore is NOT .. iv

1. Fundamentals ... 1

1.1. HTTP messages ... 1

1.1.1. Structure ... 1

1.1.2. Basic operations .. 1

1.1.3. HTTP entity .. 3

1.1.4. Creating entities .. 5

1.2. HTTP protocol processors .. 7

1.2.1. Standard protocol interceptors .. 7

1.2.2. Working with protocol processors .. 8

1.3. HTTP execution context ... 9

1.3.1. Context sharing ... 9

2. Blocking I/O model .. 10

2.1. Blocking HTTP connections ... 10

2.1.1. Working with blocking HTTP connections ... 10

2.1.2. Content transfer with blocking I/O ... 11

2.1.3. Supported content transfer mechanisms .. 11

2.1.4. Terminating HTTP connections .. 12

2.2. HTTP exception handling ... 12

2.2.1. Protocol exception ... 12

2.3. Blocking HTTP protocol handlers ... 12

2.3.1. HTTP service .. 12

2.3.2. HTTP request executor .. 14

2.3.3. Connection persistence / re-use .. 14

2.4. Connection pools ... 15

2.5. TLS/SSL support ... 16

2.6. Embedded HTTP server ... 17

3. Asynchronous I/O based on NIO ... 18

3.1. Differences from other I/O frameworks ... 18

3.2. I/O reactor ... 18

3.2.1. I/O dispatchers .. 18

3.2.2. I/O reactor shutdown ... 19

3.2.3. I/O sessions ... 19

3.2.4. I/O session state management .. 19

3.2.5. I/O session event mask .. 19

3.2.6. I/O session buffers .. 20

3.2.7. I/O session shutdown ... 20

3.2.8. Listening I/O reactors .. 20

3.2.9. Connecting I/O reactors ... 21

3.3. I/O reactor configuration .. 22

3.3.1. Queuing of I/O interest set operations .. 23

3.4. I/O reactor exception handling .. 23

3.4.1. I/O reactor audit log .. 24

3.5. Non-blocking HTTP connections .. 24

3.5.1. Execution context of non-blocking HTTP connections 24

3.5.2. Working with non-blocking HTTP connections ... 24

HttpCore Tutorial

iii

3.5.3. HTTP I/O control .. 25

3.5.4. Non-blocking content transfer .. 26

3.5.5. Supported non-blocking content transfer mechanisms 27

3.5.6. Direct channel I/O ... 27

3.6. HTTP I/O event dispatchers ... 28

3.7. Non-blocking HTTP content producers ... 30

3.7.1. Creating non-blocking entities .. 30

3.8. Non-blocking HTTP protocol handlers .. 31

3.8.1. Asynchronous HTTP service .. 31

3.8.2. Asynchronous HTTP request executor .. 35

3.9. Non-blocking connection pools ... 37

3.10. Pipelined request execution ... 38

3.11. Non-blocking TLS/SSL .. 39

3.11.1. SSL I/O session ... 39

3.11.2. TLS/SSL aware I/O event dispatches .. 40

3.12. Embedded non-blocking HTTP server ... 41

4. Advanced topics ... 42

4.1. HTTP message parsing and formatting framework ... 42

4.1.1. HTTP line parsing and formatting .. 42

4.1.2. HTTP message streams and session I/O buffers .. 44

4.1.3. HTTP message parsers and formatters .. 45

4.1.4. HTTP header parsing on demand ... 47

iv

Preface
HttpCore is a set of components implementing the most fundamental aspects of the HTTP protocol

that are nonetheless sufficient to develop full-featured client-side and server-side HTTP services with

a minimal footprint.

HttpCore has the following scope and goals:

1. HttpCore Scope

• A consistent API for building client / proxy / server side HTTP services

• A consistent API for building both synchronous and asynchronous HTTP services

• A set of low level components based on blocking (classic) and non-blocking (NIO) I/O models

2. HttpCore Goals

• Implementation of the most fundamental HTTP transport aspects

• Balance between good performance and the clarity & expressiveness of API

• Small (predictable) memory footprint

• Self-contained library (no external dependencies beyond JRE)

3. What HttpCore is NOT

• A replacement for HttpClient

• A replacement for Servlet APIs

1

Chapter 1. Fundamentals

1.1. HTTP messages

1.1.1. Structure

A HTTP message consists of a header and an optional body. The message header of an HTTP request

consists of a request line and a collection of header fields. The message header of an HTTP response

consists of a status line and a collection of header fields. All HTTP messages must include the protocol

version. Some HTTP messages can optionally enclose a content body.

HttpCore defines the HTTP message object model to follow this definition closely, and provides

extensive support for serialization (formatting) and deserialization (parsing) of HTTP message

elements.

1.1.2. Basic operations

1.1.2.1. HTTP request message

HTTP request is a message sent from the client to the server. The first line of that message includes

the method to apply to the resource, the identifier of the resource, and the protocol version in use.

HttpRequest request = new BasicHttpRequest("GET", "/",

 HttpVersion.HTTP_1_1);

System.out.println(request.getRequestLine().getMethod());

System.out.println(request.getRequestLine().getUri());

System.out.println(request.getProtocolVersion());

System.out.println(request.getRequestLine().toString());

stdout >

GET

/

HTTP/1.1

GET / HTTP/1.1

1.1.2.2. HTTP response message

HTTP response is a message sent by the server back to the client after having received and interpreted

a request message. The first line of that message consists of the protocol version followed by a numeric

status code and its associated textual phrase.

HttpResponse response = new BasicHttpResponse(HttpVersion.HTTP_1_1,

 HttpStatus.SC_OK, "OK");

System.out.println(response.getProtocolVersion());

System.out.println(response.getStatusLine().getStatusCode());

System.out.println(response.getStatusLine().getReasonPhrase());

System.out.println(response.getStatusLine().toString());

stdout >

Fundamentals

2

HTTP/1.1

200

OK

HTTP/1.1 200 OK

1.1.2.3. HTTP message common properties and methods

An HTTP message can contain a number of headers describing properties of the message such as

the content length, content type, and so on. HttpCore provides methods to retrieve, add, remove, and

enumerate such headers.

HttpResponse response = new BasicHttpResponse(HttpVersion.HTTP_1_1,

 HttpStatus.SC_OK, "OK");

response.addHeader("Set-Cookie",

 "c1=a; path=/; domain=localhost");

response.addHeader("Set-Cookie",

 "c2=b; path=\"/\", c3=c; domain=\"localhost\"");

Header h1 = response.getFirstHeader("Set-Cookie");

System.out.println(h1);

Header h2 = response.getLastHeader("Set-Cookie");

System.out.println(h2);

Header[] hs = response.getHeaders("Set-Cookie");

System.out.println(hs.length);

stdout >

Set-Cookie: c1=a; path=/; domain=localhost

Set-Cookie: c2=b; path="/", c3=c; domain="localhost"

2

There is an efficient way to obtain all headers of a given type using the HeaderIterator interface.

HttpResponse response = new BasicHttpResponse(HttpVersion.HTTP_1_1,

 HttpStatus.SC_OK, "OK");

response.addHeader("Set-Cookie",

 "c1=a; path=/; domain=localhost");

response.addHeader("Set-Cookie",

 "c2=b; path=\"/\", c3=c; domain=\"localhost\"");

HeaderIterator it = response.headerIterator("Set-Cookie");

while (it.hasNext()) {

 System.out.println(it.next());

}

stdout >

Set-Cookie: c1=a; path=/; domain=localhost

Set-Cookie: c2=b; path="/", c3=c; domain="localhost"

It also provides convenience methods to parse HTTP messages into individual header elements.

HttpResponse response = new BasicHttpResponse(HttpVersion.HTTP_1_1,

 HttpStatus.SC_OK, "OK");

response.addHeader("Set-Cookie",

 "c1=a; path=/; domain=localhost");

Fundamentals

3

response.addHeader("Set-Cookie",

 "c2=b; path=\"/\", c3=c; domain=\"localhost\"");

HeaderElementIterator it = new BasicHeaderElementIterator(

 response.headerIterator("Set-Cookie"));

while (it.hasNext()) {

 HeaderElement elem = it.nextElement();

 System.out.println(elem.getName() + " = " + elem.getValue());

 NameValuePair[] params = elem.getParameters();

 for (int i = 0; i < params.length; i++) {

 System.out.println(" " + params[i]);

 }

}

stdout >

c1 = a

 path=/

 domain=localhost

c2 = b

 path=/

c3 = c

 domain=localhost

HTTP headers are tokenized into individual header elements only on demand. HTTP headers received

over an HTTP connection are stored internally as an array of characters and parsed lazily only when

you access their properties.

1.1.3. HTTP entity

HTTP messages can carry a content entity associated with the request or response. Entities can be found

in some requests and in some responses, as they are optional. Requests that use entities are referred to

as entity-enclosing requests. The HTTP specification defines two entity-enclosing methods: POST and

PUT. Responses are usually expected to enclose a content entity. There are exceptions to this rule such

as responses to HEAD method and 204 No Content, 304 Not Modified, 205 Reset Content responses.

HttpCore distinguishes three kinds of entities, depending on where their content originates:

• streamed: The content is received from a stream, or generated on the fly. In particular, this

category includes entities being received from a connection. Streamed entities are generally not

repeatable.

• self-contained: The content is in memory or obtained by means that are independent from a

connection or other entity. Self-contained entities are generally repeatable.

• wrapping: The content is obtained from another entity.

1.1.3.1. Repeatable entities

An entity can be repeatable, meaning its content can be read more than once. This is only possible with

self-contained entities (like ByteArrayEntity or StringEntity).

1.1.3.2. Using HTTP entities

Since an entity can represent both binary and character content, it has support for character encodings

(to support the latter, i.e. character content).

Fundamentals

4

The entity is created when executing a request with enclosed content or when the request was successful

and the response body is used to send the result back to the client.

To read the content from the entity, one can either retrieve the input stream via the

HttpEntity#getContent() method, which returns an java.io.InputStream, or one can supply

an output stream to the HttpEntity#writeTo(OutputStream) method, which will return once all

content has been written to the given stream. Please note that some non-streaming (self-contained)

entities may be unable to represent their content as a java.io.InputStream efficiently. It is legal

for such entities to implement HttpEntity#writeTo(OutputStream) method only and to throw

UnsupportedOperationException from HttpEntity#getContent() method.

The EntityUtils class exposes several static methods to simplify extracting the content or information

from an entity. Instead of reading the java.io.InputStream directly, one can retrieve the complete

content body in a string or byte array by using the methods from this class.

When the entity has been received with an incoming message, the methods

HttpEntity#getContentType() and HttpEntity#getContentLength() methods can be used for

reading the common metadata such as Content-Type and Content-Length headers (if they are

available). Since the Content-Type header can contain a character encoding for text mime-types

like text/plain or text/html, the HttpEntity#getContentEncoding() method is used to read this

information. If the headers aren't available, a length of -1 will be returned, and NULL for the content

type. If the Content-Type header is available, a Header object will be returned.

When creating an entity for a outgoing message, this meta data has to be supplied by the creator of

the entity.

StringEntity myEntity = new StringEntity("important message",

 Consts.UTF_8);

System.out.println(myEntity.getContentType());

System.out.println(myEntity.getContentLength());

System.out.println(EntityUtils.toString(myEntity));

System.out.println(EntityUtils.toByteArray(myEntity).length);

stdout >

Content-Type: text/plain; charset=UTF-8

17

important message

17

1.1.3.3. Ensuring release of system resources

In order to ensure proper release of system resources one must close the content stream associated

with the entity.

HttpResponse response;

HttpEntity entity = response.getEntity();

if (entity != null) {

 InputStream instream = entity.getContent();

 try {

 // do something useful

 } finally {

 instream.close();

 }

Fundamentals

5

}

When working with streaming entities, one can use the EntityUtils#consume(HttpEntity) method

to ensure that the entity content has been fully consumed and the underlying stream has been closed.

1.1.4. Creating entities

There are a few ways to create entities. HttpCore provides the following implementations:

• BasicHttpEntity

• ByteArrayEntity

• StringEntity

• InputStreamEntity

• FileEntity

• EntityTemplate

• HttpEntityWrapper

• BufferedHttpEntity

1.1.4.1. BasicHttpEntity

Exactly as the name implies, this basic entity represents an underlying stream. In general, use this class

for entities received from HTTP messages.

This entity has an empty constructor. After construction, it represents no content, and has a negative

content length.

One needs to set the content stream, and optionally the length. This can be done with

the BasicHttpEntity#setContent(InputStream) and BasicHttpEntity#setContentLength(long)

methods respectively.

BasicHttpEntity myEntity = new BasicHttpEntity();

myEntity.setContent(someInputStream);

myEntity.setContentLength(340); // sets the length to 340

1.1.4.2. ByteArrayEntity

ByteArrayEntity is a self-contained, repeatable entity that obtains its content from a given byte array.

Supply the byte array to the constructor.

ByteArrayEntity myEntity = new ByteArrayEntity(new byte[] {1,2,3},

 ContentType.APPLICATION_OCTET_STREAM);

1.1.4.3. StringEntity

StringEntity is a self-contained, repeatable entity that obtains its content from a java.lang.String

object. It has three constructors, one simply constructs with a given java.lang.String object; the

second also takes a character encoding for the data in the string; the third allows the mime type to

be specified.

Fundamentals

6

StringBuilder sb = new StringBuilder();

Map<String, String> env = System.getenv();

for (Map.Entry<String, String> envEntry : env.entrySet()) {

 sb.append(envEntry.getKey())

 .append(": ").append(envEntry.getValue())

 .append("\r\n");

}

// construct without a character encoding (defaults to ISO-8859-1)

HttpEntity myEntity1 = new StringEntity(sb.toString());

// alternatively construct with an encoding (mime type defaults to "text/plain")

HttpEntity myEntity2 = new StringEntity(sb.toString(), Consts.UTF_8);

// alternatively construct with an encoding and a mime type

HttpEntity myEntity3 = new StringEntity(sb.toString(),

 ContentType.create("text/plain", Consts.UTF_8));

1.1.4.4. InputStreamEntity

InputStreamEntity is a streamed, non-repeatable entity that obtains its content from an input stream.

Construct it by supplying the input stream and the content length. Use the content length to limit the

amount of data read from the java.io.InputStream. If the length matches the content length available

on the input stream, then all data will be sent. Alternatively, a negative content length will read all data

from the input stream, which is the same as supplying the exact content length, so use the length to

limit the amount of data to read.

InputStream instream = getSomeInputStream();

InputStreamEntity myEntity = new InputStreamEntity(instream, 16);

1.1.4.5. FileEntity

FileEntity is a self-contained, repeatable entity that obtains its content from a file. Use this mostly to

stream large files of different types, where you need to supply the content type of the file, for instance,

sending a zip file would require the content type application/zip, for XML application/xml.

HttpEntity entity = new FileEntity(staticFile,

 ContentType.create("application/java-archive"));

1.1.4.6. HttpEntityWrapper

This is the base class for creating wrapped entities. The wrapping entity holds a reference to a wrapped

entity and delegates all calls to it. Implementations of wrapping entities can derive from this class and

need to override only those methods that should not be delegated to the wrapped entity.

1.1.4.7. BufferedHttpEntity

BufferedHttpEntity is a subclass of HttpEntityWrapper. Construct it by supplying another entity.

It reads the content from the supplied entity, and buffers it in memory.

This makes it possible to make a repeatable entity, from a non-repeatable entity. If the supplied entity

is already repeatable, it simply passes calls through to the underlying entity.

myNonRepeatableEntity.setContent(someInputStream);

BufferedHttpEntity myBufferedEntity = new BufferedHttpEntity(

Fundamentals

7

 myNonRepeatableEntity);

1.2. HTTP protocol processors

HTTP protocol interceptor is a routine that implements a specific aspect of the HTTP protocol. Usually

protocol interceptors are expected to act upon one specific header or a group of related headers of the

incoming message or populate the outgoing message with one specific header or a group of related

headers. Protocol interceptors can also manipulate content entities enclosed with messages; transparent

content compression / decompression being a good example. Usually this is accomplished by using the

'Decorator' pattern where a wrapper entity class is used to decorate the original entity. Several protocol

interceptors can be combined to form one logical unit.

HTTP protocol processor is a collection of protocol interceptors that implements the 'Chain of

Responsibility' pattern, where each individual protocol interceptor is expected to work on the particular

aspect of the HTTP protocol it is responsible for.

Usually the order in which interceptors are executed should not matter as long as they do not depend on

a particular state of the execution context. If protocol interceptors have interdependencies and therefore

must be executed in a particular order, they should be added to the protocol processor in the same

sequence as their expected execution order.

Protocol interceptors must be implemented as thread-safe. Similarly to servlets, protocol interceptors

should not use instance variables unless access to those variables is synchronized.

1.2.1. Standard protocol interceptors

HttpCore comes with a number of most essential protocol interceptors for client and server HTTP

processing.

1.2.1.1. RequestContent

RequestContent is the most important interceptor for outgoing requests. It is responsible for delimiting

content length by adding the Content-Length or Transfer-Content headers based on the properties

of the enclosed entity and the protocol version. This interceptor is required for correct functioning of

client side protocol processors.

1.2.1.2. ResponseContent

ResponseContent is the most important interceptor for outgoing responses. It is responsible for

delimiting content length by adding Content-Length or Transfer-Content headers based on the

properties of the enclosed entity and the protocol version. This interceptor is required for correct

functioning of server side protocol processors.

1.2.1.3. RequestConnControl

RequestConnControl is responsible for adding the Connection header to the outgoing requests, which

is essential for managing persistence of HTTP/1.0 connections. This interceptor is recommended for

client side protocol processors.

1.2.1.4. ResponseConnControl

ResponseConnControl is responsible for adding the Connection header to the outgoing responses,

which is essential for managing persistence of HTTP/1.0 connections. This interceptor is recommended

for server side protocol processors.

Fundamentals

8

1.2.1.5. RequestDate

RequestDate is responsible for adding the Date header to the outgoing requests. This interceptor is

optional for client side protocol processors.

1.2.1.6. ResponseDate

ResponseDate is responsible for adding the Date header to the outgoing responses. This interceptor is

recommended for server side protocol processors.

1.2.1.7. RequestExpectContinue

RequestExpectContinue is responsible for enabling the 'expect-continue' handshake by adding the

Expect header. This interceptor is recommended for client side protocol processors.

1.2.1.8. RequestTargetHost

RequestTargetHost is responsible for adding the Host header. This interceptor is required for client

side protocol processors.

1.2.1.9. RequestUserAgent

RequestUserAgent is responsible for adding the User-Agent header. This interceptor is recommended

for client side protocol processors.

1.2.1.10. ResponseServer

ResponseServer is responsible for adding the Server header. This interceptor is recommended for

server side protocol processors.

1.2.2. Working with protocol processors

Usually HTTP protocol processors are used to pre-process incoming messages prior to executing

application specific processing logic and to post-process outgoing messages.

HttpProcessor httpproc = HttpProcessorBuilder.create()

 // Required protocol interceptors

 .add(new RequestContent())

 .add(new RequestTargetHost())

 // Recommended protocol interceptors

 .add(new RequestConnControl())

 .add(new RequestUserAgent("MyAgent-HTTP/1.1"))

 // Optional protocol interceptors

 .add(new RequestExpectContinue(true))

 .build();

HttpCoreContext context = HttpCoreContext.create();

HttpRequest request = new BasicHttpRequest("GET", "/");

httpproc.process(request, context);

Send the request to the target host and get a response.

HttpResponse = <...>

httpproc.process(response, context);

Please note the BasicHttpProcessor class does not synchronize access to its internal structures and

therefore may not be thread-safe.

Fundamentals

9

1.3. HTTP execution context

Originally HTTP has been designed as a stateless, response-request oriented protocol. However, real

world applications often need to be able to persist state information through several logically related

request-response exchanges. In order to enable applications to maintain a processing state HttpCpre

allows HTTP messages to be executed within a particular execution context, referred to as HTTP

context. Multiple logically related messages can participate in a logical session if the same context is

reused between consecutive requests. HTTP context functions similarly to a java.util.Map<String,

Object>. It is simply a collection of logically related named values.

Please nore HttpContext can contain arbitrary objects and therefore may be unsafe to share between

multiple threads. Care must be taken to ensure that HttpContext instances can be accessed by one

thread at a time.

1.3.1. Context sharing

Protocol interceptors can collaborate by sharing information - such as a processing state - through an

HTTP execution context. HTTP context is a structure that can be used to map an attribute name to

an attribute value. Internally HTTP context implementations are usually backed by a HashMap. The

primary purpose of the HTTP context is to facilitate information sharing among various logically

related components. HTTP context can be used to store a processing state for one message or several

consecutive messages. Multiple logically related messages can participate in a logical session if the

same context is reused between consecutive messages.

HttpProcessor httpproc = HttpProcessorBuilder.create()

 .add(new HttpRequestInterceptor() {

 public void process(

 HttpRequest request,

 HttpContext context) throws HttpException, IOException {

 String id = (String) context.getAttribute("session-id");

 if (id != null) {

 request.addHeader("Session-ID", id);

 }

 }

 })

 .build();

HttpCoreContext context = HttpCoreContext.create();

HttpRequest request = new BasicHttpRequest("GET", "/");

httpproc.process(request, context);

10

Chapter 2. Blocking I/O model
Blocking (or classic) I/O in Java represents a highly efficient and convenient I/O model well suited

for high performance applications where the number of concurrent connections is relatively moderate.

Modern JVMs are capable of efficient context switching and the blocking I/O model should offer the

best performance in terms of raw data throughput as long as the number of concurrent connections

is below one thousand and connections are mostly busy transmitting data. However for applications

where connections stay idle most of the time the overhead of context switching may become substantial

and a non-blocking I/O model may present a better alternative.

2.1. Blocking HTTP connections

HTTP connections are responsible for HTTP message serialization and deserialization. One should

rarely need to use HTTP connection objects directly. There are higher level protocol components

intended for execution and processing of HTTP requests. However, in some cases direct interaction

with HTTP connections may be necessary, for instance, to access properties such as the connection

status, the socket timeout or the local and remote addresses.

It is important to bear in mind that HTTP connections are not thread-safe. We strongly recommend

limiting all interactions with HTTP connection objects to one thread. The only method of

HttpConnection interface and its sub-interfaces which is safe to invoke from another thread is

HttpConnection#shutdown() .

2.1.1. Working with blocking HTTP connections

HttpCore does not provide full support for opening connections because the process of establishing

a new connection - especially on the client side - can be very complex when it involves one or more

authenticating or/and tunneling proxies. Instead, blocking HTTP connections can be bound to any

arbitrary network socket.

Socket socket = <...>

DefaultBHttpClientConnection conn = new DefaultBHttpClientConnection(8 * 1024);

conn.bind(socket);

System.out.println(conn.isOpen());

HttpConnectionMetrics metrics = conn.getMetrics();

System.out.println(metrics.getRequestCount());

System.out.println(metrics.getResponseCount());

System.out.println(metrics.getReceivedBytesCount());

System.out.println(metrics.getSentBytesCount());

HTTP connection interfaces, both client and server, send and receive messages in two stages. The

message head is transmitted first. Depending on properties of the message head, a message body may

follow it. Please note it is very important to always close the underlying content stream in order to

signal that the processing of the message is complete. HTTP entities that stream out their content

directly from the input stream of the underlying connection must ensure they fully consume the content

of the message body for that connection to be potentially re-usable.

Over-simplified process of request execution on the client side may look like this:

Socket socket = <...>

Blocking I/O model

11

DefaultBHttpClientConnection conn = new DefaultBHttpClientConnection(8 * 1024);

conn.bind(socket);

HttpRequest request = new BasicHttpRequest("GET", "/");

conn.sendRequestHeader(request);

HttpResponse response = conn.receiveResponseHeader();

conn.receiveResponseEntity(response);

HttpEntity entity = response.getEntity();

if (entity != null) {

 // Do something useful with the entity and, when done, ensure all

 // content has been consumed, so that the underlying connection

 // can be re-used

 EntityUtils.consume(entity);

}

Over-simplified process of request handling on the server side may look like this:

Socket socket = <...>

DefaultBHttpServerConnection conn = new DefaultBHttpServerConnection(8 * 1024);

conn.bind(socket);

HttpRequest request = conn.receiveRequestHeader();

if (request instanceof HttpEntityEnclosingRequest) {

 conn.receiveRequestEntity((HttpEntityEnclosingRequest) request);

 HttpEntity entity = ((HttpEntityEnclosingRequest) request)

 .getEntity();

 if (entity != null) {

 // Do something useful with the entity and, when done, ensure all

 // content has been consumed, so that the underlying connection

 // could be re-used

 EntityUtils.consume(entity);

 }

}

HttpResponse response = new BasicHttpResponse(HttpVersion.HTTP_1_1,

 200, "OK") ;

response.setEntity(new StringEntity("Got it"));

conn.sendResponseHeader(response);

conn.sendResponseEntity(response);

Please note that one should rarely need to transmit messages using these low level methods and should

normally use the appropriate higher level HTTP service implementations instead.

2.1.2. Content transfer with blocking I/O

HTTP connections manage the process of the content transfer using the HttpEntity

interface. HTTP connections generate an entity object that encapsulates the content stream

of the incoming message. Please note that HttpServerConnection#receiveRequestEntity()

and HttpClientConnection#receiveResponseEntity() do not retrieve or buffer any incoming

data. They merely inject an appropriate content codec based on the properties of the incoming

message. The content can be retrieved by reading from the content input stream of the

enclosed entity using HttpEntity#getContent(). The incoming data will be decoded automatically

and completely transparently to the data consumer. Likewise, HTTP connections rely on

HttpEntity#writeTo(OutputStream) method to generate the content of an outgoing message. If an

outgoing message encloses an entity, the content will be encoded automatically based on the properties

of the message.

2.1.3. Supported content transfer mechanisms

Default implementations of HTTP connections support three content transfer mechanisms defined by

the HTTP/1.1 specification:

Blocking I/O model

12

• Content-Length delimited: The end of the content entity is determined by the value of the

Content-Length header. Maximum entity length: Long#MAX_VALUE.

• Identity coding: The end of the content entity is demarcated by closing the underlying connection

(end of stream condition). For obvious reasons the identity encoding can only be used on the server

side. Maximum entity length: unlimited.

• Chunk coding: The content is sent in small chunks. Maximum entity length: unlimited.

The appropriate content stream class will be created automatically depending on properties of the entity

enclosed with the message.

2.1.4. Terminating HTTP connections

HTTP connections can be terminated either gracefully by calling HttpConnection#close() or

forcibly by calling HttpConnection#shutdown(). The former tries to flush all buffered data prior to

terminating the connection and may block indefinitely. The HttpConnection#close() method is not

thread-safe. The latter terminates the connection without flushing internal buffers and returns control

to the caller as soon as possible without blocking for long. The HttpConnection#shutdown() method

is thread-safe.

2.2. HTTP exception handling

All HttpCore components potentially throw two types of exceptions: IOException in case of an I/

O failure such as socket timeout or an socket reset and HttpException that signals an HTTP failure

such as a violation of the HTTP protocol. Usually I/O errors are considered non-fatal and recoverable,

whereas HTTP protocol errors are considered fatal and cannot be automatically recovered from.

2.2.1. Protocol exception

ProtocolException signals a fatal HTTP protocol violation that usually results in an immediate

termination of the HTTP message processing.

2.3. Blocking HTTP protocol handlers

2.3.1. HTTP service

HttpService is a server side HTTP protocol handler based on the blocking I/O model that implements

the essential requirements of the HTTP protocol for the server side message processing as described

by RFC 2616.

HttpService relies on HttpProcessor instance to generate mandatory protocol headers for all

outgoing messages and apply common, cross-cutting message transformations to all incoming and

outgoing messages, whereas HTTP request handlers are expected to take care of application specific

content generation and processing.

HttpProcessor httpproc = HttpProcessorBuilder.create()

 .add(new ResponseDate())

 .add(new ResponseServer("MyServer-HTTP/1.1"))

 .add(new ResponseContent())

 .add(new ResponseConnControl())

Blocking I/O model

13

 .build();

HttpService httpService = new HttpService(httpproc, null);

2.3.1.1. HTTP request handlers

The HttpRequestHandler interface represents a routine for processing of a specific group of HTTP

requests. HttpService is designed to take care of protocol specific aspects, whereas individual request

handlers are expected to take care of application specific HTTP processing. The main purpose of a

request handler is to generate a response object with a content entity to be sent back to the client in

response to the given request.

HttpRequestHandler myRequestHandler = new HttpRequestHandler() {

 public void handle(

 HttpRequest request,

 HttpResponse response,

 HttpContext context) throws HttpException, IOException {

 response.setStatusCode(HttpStatus.SC_OK);

 response.setEntity(

 new StringEntity("some important message",

 ContentType.TEXT_PLAIN));

 }

};

2.3.1.2. Request handler resolver

HTTP request handlers are usually managed by a HttpRequestHandlerResolver that matches a

request URI to a request handler. HttpCore includes a very simple implementation of the request

handler resolver based on a trivial pattern matching algorithm: HttpRequestHandlerRegistry

supports only three formats: *, <uri>* and *<uri>.

HttpProcessor httpproc = <...>

HttpRequestHandler myRequestHandler1 = <...>

HttpRequestHandler myRequestHandler2 = <...>

HttpRequestHandler myRequestHandler3 = <...>

UriHttpRequestHandlerMapper handlerMapper = new UriHttpRequestHandlerMapper();

handlerMapper.register("/service/*", myRequestHandler1);

handlerMapper.register("*.do", myRequestHandler2);

handlerMapper.register("*", myRequestHandler3);

HttpService httpService = new HttpService(httpproc, handlerMapper);

Users are encouraged to provide more sophisticated implementations of

HttpRequestHandlerResolver - for instance, based on regular expressions.

2.3.1.3. Using HTTP service to handle requests

When fully initialized and configured, the HttpService can be used to execute and handle requests

for active HTTP connections. The HttpService#handleRequest() method reads an incoming request,

generates a response and sends it back to the client. This method can be executed in a loop to

handle multiple requests on a persistent connection. The HttpService#handleRequest() method is

safe to execute from multiple threads. This allows processing of requests on several connections

simultaneously, as long as all the protocol interceptors and requests handlers used by the HttpService

are thread-safe.

Blocking I/O model

14

HttpService httpService = <...>

HttpServerConnection conn = <...>

HttpContext context = <...>

boolean active = true;

try {

 while (active && conn.isOpen()) {

 httpService.handleRequest(conn, context);

 }

} finally {

 conn.shutdown();

}

2.3.2. HTTP request executor

HttpRequestExecutor is a client side HTTP protocol handler based on the blocking I/O model that

implements the essential requirements of the HTTP protocol for the client side message processing,

as described by RFC 2616. The HttpRequestExecutor relies on the HttpProcessor instance to

generate mandatory protocol headers for all outgoing messages and apply common, cross-cutting

message transformations to all incoming and outgoing messages. Application specific processing can

be implemented outside HttpRequestExecutor once the request has been executed and a response has

been received.

HttpClientConnection conn = <...>

HttpProcessor httpproc = HttpProcessorBuilder.create()

 .add(new RequestContent())

 .add(new RequestTargetHost())

 .add(new RequestConnControl())

 .add(new RequestUserAgent("MyClient/1.1"))

 .add(new RequestExpectContinue(true))

 .build();

HttpRequestExecutor httpexecutor = new HttpRequestExecutor();

HttpRequest request = new BasicHttpRequest("GET", "/");

HttpCoreContext context = HttpCoreContext.create();

httpexecutor.preProcess(request, httpproc, context);

HttpResponse response = httpexecutor.execute(request, conn, context);

httpexecutor.postProcess(response, httpproc, context);

HttpEntity entity = response.getEntity();

EntityUtils.consume(entity);

Methods of HttpRequestExecutor are safe to execute from multiple threads. This allows execution

of requests on several connections simultaneously, as long as all the protocol interceptors used by the

HttpRequestExecutor are thread-safe.

2.3.3. Connection persistence / re-use

The ConnectionReuseStrategy interface is intended to determine whether the underlying connection

can be re-used for processing of further messages after the transmission of the current message has

been completed. The default connection re-use strategy attempts to keep connections alive whenever

possible. Firstly, it examines the version of the HTTP protocol used to transmit the message. HTTP/1.1

connections are persistent by default, while HTTP/1.0 connections are not. Secondly, it examines

the value of the Connection header. The peer can indicate whether it intends to re-use the connection

on the opposite side by sending Keep-Alive or Close values in the Connection header. Thirdly, the

Blocking I/O model

15

strategy makes the decision whether the connection is safe to re-use based on the properties of the

enclosed entity, if available.

2.4. Connection pools

Efficient client-side HTTP transports often requires effective re-use of persistent connections.

HttpCore facilitates the process of connection re-use by providing support for managing pools of

persistent HTTP connections. Connection pool implementations are thread-safe and can be used

concurrently by multiple consumers.

By default the pool allows only 20 concurrent connections in total and two concurrent connections

per a unique route. The two connection limit is due to the requirements of the HTTP specification.

However, in practical terms this can often be too restrictive. One can change the pool configuration at

runtime to allow for more concurrent connections depending on a particular application context.

HttpHost target = new HttpHost("localhost");

BasicConnPool connpool = new BasicConnPool();

connpool.setMaxTotal(200);

connpool.setDefaultMaxPerRoute(10);

connpool.setMaxPerRoute(target, 20);

Future<BasicPoolEntry> future = connpool.lease(target, null);

BasicPoolEntry poolEntry = future.get();

HttpClientConnection conn = poolEntry.getConnection();

Please note that the connection pool has no way of knowing whether or not a leased connection is still

being used. It is the responsibility of the connection pool user to ensure that the connection is released

back to the pool once it is not longer needed, even if the connection is not reusable.

BasicConnPool connpool = <...>

Future<BasicPoolEntry> future = connpool.lease(target, null);

BasicPoolEntry poolEntry = future.get();

try {

 HttpClientConnection conn = poolEntry.getConnection();

} finally {

 connpool.release(poolEntry, true);

}

The state of the connection pool can be interrogated at runtime.

HttpHost target = new HttpHost("localhost");

BasicConnPool connpool = <...>

PoolStats totalStats = connpool.getTotalStats();

System.out.println("total available: " + totalStats.getAvailable());

System.out.println("total leased: " + totalStats.getLeased());

System.out.println("total pending: " + totalStats.getPending());

PoolStats targetStats = connpool.getStats(target);

System.out.println("target available: " + targetStats.getAvailable());

System.out.println("target leased: " + targetStats.getLeased());

System.out.println("target pending: " + targetStats.getPending());

Please note that connection pools do not pro-actively evict expired connections. Even though expired

connection cannot be leased to the requester, the pool may accumulate stale connections over time

especially after a period of inactivity. It is generally advisable to force eviction of expired and idle

connections from the pool after an extensive period of inactivity.

Blocking I/O model

16

BasicConnPool connpool = <...>

connpool.closeExpired();

connpool.closeIdle(1, TimeUnit.MINUTES);

Generally it is considered to be a responsibility of the consumer to keep track of connections

leased from the pool and to ensure their immediate release as soon as they are no longer needed

or actively used. Nevertheless BasicConnPool provides protected methods to enumerate available

idle connections and those currently leased from the pool. This enables the pool consumer to query

connection state and selectively terminate connections meeting a particular criterion.

static class MyBasicConnPool extends BasicConnPool {

 @Override

 protected void enumAvailable(final PoolEntryCallback<HttpHost, HttpClientConnection> callback) {

 super.enumAvailable(callback);

 }

 @Override

 protected void enumLeased(final PoolEntryCallback<HttpHost, HttpClientConnection> callback) {

 super.enumLeased(callback);

 }

}

MyBasicConnPool connpool = new MyBasicConnPool();

connpool.enumAvailable(new PoolEntryCallback<HttpHost, HttpClientConnection>() {

 @Override

 public void process(final PoolEntry<HttpHost, HttpClientConnection> entry) {

 Date creationTime = new Date(entry.getCreated());

 if (creationTime.before(someTime)) {

 entry.close();

 }

 }

});

2.5. TLS/SSL support

Blocking connections can be bound to any arbitrary socket. This makes SSL support quite straight-

forward. Any SSLSocket instance can be bound to a blocking connection in order to make all messages

transmitted over than connection secured by TLS/SSL.

SSLContext sslcontext = SSLContexts.createSystemDefault();

SocketFactory sf = sslcontext.getSocketFactory();

SSLSocket socket = (SSLSocket) sf.createSocket("somehost", 443);

// Enforce TLS and disable SSL

socket.setEnabledProtocols(new String[] {

 "TLSv1",

 "TLSv1.1",

 "TLSv1.2" });

// Enforce strong ciphers

socket.setEnabledCipherSuites(new String[] {

 "TLS_RSA_WITH_AES_256_CBC_SHA",

 "TLS_DHE_RSA_WITH_AES_256_CBC_SHA",

 "TLS_DHE_DSS_WITH_AES_256_CBC_SHA" });

DefaultBHttpClientConnection conn = new DefaultBHttpClientConnection(8 * 1204);

conn.bind(socket);

Blocking I/O model

17

2.6. Embedded HTTP server

As of version 4.4 HttpCore ships with an embedded HTTP server based on blocking I/O components

described above.

HttpRequestHandler requestHandler = <...>

HttpProcessor httpProcessor = <...>

SocketConfig socketConfig = SocketConfig.custom()

 .setSoTimeout(15000)

 .setTcpNoDelay(true)

 .build();

final HttpServer server = ServerBootstrap.bootstrap()

 .setListenerPort(8080)

 .setHttpProcessor(httpProcessor)

 .setSocketConfig(socketConfig)

 .setExceptionLogger(new StdErrorExceptionLogger())

 .registerHandler("*", requestHandler)

 .create();

server.start();

server.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);

Runtime.getRuntime().addShutdownHook(new Thread() {

 @Override

 public void run() {

 server.shutdown(5, TimeUnit.SECONDS);

 }

});

18

Chapter 3. Asynchronous I/O based on
NIO

Asynchronous I/O model may be more appropriate for those scenarios where raw data throughput is

less important than the ability to handle thousands of simultaneous connections in a scalable, resource

efficient manner. Asynchronous I/O is arguably more complex and usually requires a special care when

dealing with large message payloads.

3.1. Differences from other I/O frameworks

Solves similar problems as other frameworks, but has certain distinct features:

• minimalistic, optimized for data volume intensive protocols such as HTTP.

• efficient memory management: data consumer can read is only as much input data as it can process

without having to allocate more memory.

• direct access to the NIO channels where possible.

3.2. I/O reactor

HttpCore NIO is based on the Reactor pattern as described by Doug Lea. The purpose of I/O reactors

is to react to I/O events and to dispatch event notifications to individual I/O sessions. The main

idea of I/O reactor pattern is to break away from the one thread per connection model imposed

by the classic blocking I/O model. The IOReactor interface represents an abstract object which

implements the Reactor pattern. Internally, IOReactor implementations encapsulate functionality of

the NIO java.nio.channels.Selector.

I/O reactors usually employ a small number of dispatch threads (often as few as one) to dispatch I/O

event notifications to a much greater number (often as many as several thousands) of I/O sessions or

connections. It is generally recommended to have one dispatch thread per CPU core.

IOReactorConfig config = IOReactorConfig.DEFAULT;

IOReactor ioreactor = new DefaultConnectingIOReactor(config);

3.2.1. I/O dispatchers

IOReactor implementations make use of the IOEventDispatch interface to notify clients of events

pending for a particular session. All methods of the IOEventDispatch are executed on a dispatch

thread of the I/O reactor. Therefore, it is important that processing that takes place in the event methods

will not block the dispatch thread for too long, as the I/O reactor will be unable to react to other events.

IOReactor ioreactor = new DefaultConnectingIOReactor();

IOEventDispatch eventDispatch = <...>

ioreactor.execute(eventDispatch);

Generic I/O events as defined by the IOEventDispatch interface:

Asynchronous I/O based on NIO

19

• connected: Triggered when a new session has been created.

• inputReady: Triggered when the session has pending input.

• outputReady: Triggered when the session is ready for output.

• timeout: Triggered when the session has timed out.

• disconnected: Triggered when the session has been terminated.

3.2.2. I/O reactor shutdown

The shutdown of I/O reactors is a complex process and may usually take a while to complete. I/O

reactors will attempt to gracefully terminate all active I/O sessions and dispatch threads approximately

within the specified grace period. If any of the I/O sessions fails to terminate correctly, the I/O reactor

will forcibly shut down remaining sessions.

IOReactor ioreactor = <...>

long gracePeriod = 3000L; // milliseconds

ioreactor.shutdown(gracePeriod);

The IOReactor#shutdown(long) method is safe to call from any thread.

3.2.3. I/O sessions

The IOSession interface represents a sequence of logically related data exchanges between two

end points. IOSession encapsulates functionality of NIO java.nio.channels.SelectionKey and

java.nio.channels.SocketChannel. The channel associated with the IOSession can be used to read

data from and write data to the session.

IOSession iosession = <...>

ReadableByteChannel ch = (ReadableByteChannel) iosession.channel();

ByteBuffer dst = ByteBuffer.allocate(2048);

ch.read(dst);

3.2.4. I/O session state management

I/O sessions are not bound to an execution thread, therefore one cannot use the context of the thread

to store a session's state. All details about a particular session must be stored within the session itself.

IOSession iosession = <...>

Object someState = <...>

iosession.setAttribute("state", someState);

...

IOSession iosession = <...>

Object currentState = iosession.getAttribute("state");

Please note that if several sessions make use of shared objects, access to those objects must be made

thread-safe.

3.2.5. I/O session event mask

One can declare an interest in a particular type of I/O events for a particular I/O session by setting

its event mask.

Asynchronous I/O based on NIO

20

IOSession iosession = <...>

iosession.setEventMask(SelectionKey.OP_READ | SelectionKey.OP_WRITE);

One can also toggle OP_READ and OP_WRITE flags individually.

IOSession iosession = <...>

iosession.setEvent(SelectionKey.OP_READ);

iosession.clearEvent(SelectionKey.OP_READ);

Event notifications will not take place if the corresponding interest flag is not set.

3.2.6. I/O session buffers

Quite often I/O sessions need to maintain internal I/O buffers in order to transform input / output data

prior to returning it to the consumer or writing it to the underlying channel. Memory management in

HttpCore NIO is based on the fundamental principle that the data a consumer can read, is only as much

input data as it can process without having to allocate more memory. That means, quite often some

input data may remain unread in one of the internal or external session buffers. The I/O reactor can

query the status of these session buffers, and make sure the consumer gets notified correctly as more

data gets stored in one of the session buffers, thus allowing the consumer to read the remaining data

once it is able to process it. I/O sessions can be made aware of the status of external session buffers

using the SessionBufferStatus interface.

IOSession iosession = <...>

SessionBufferStatus myBufferStatus = <...>

iosession.setBufferStatus(myBufferStatus);

iosession.hasBufferedInput();

iosession.hasBufferedOutput();

3.2.7. I/O session shutdown

One can close an I/O session gracefully by calling IOSession#close() allowing the session to be

closed in an orderly manner or by calling IOSession#shutdown() to forcibly close the underlying

channel. The distinction between two methods is of primary importance for those types of I/O sessions

that involve some sort of a session termination handshake such as SSL/TLS connections.

3.2.8. Listening I/O reactors

ListeningIOReactor represents an I/O reactor capable of listening for incoming connections on one

or several ports.

ListeningIOReactor ioreactor = <...>

ListenerEndpoint ep1 = ioreactor.listen(new InetSocketAddress(8081));

ListenerEndpoint ep2 = ioreactor.listen(new InetSocketAddress(8082));

ListenerEndpoint ep3 = ioreactor.listen(new InetSocketAddress(8083));

// Wait until all endpoints are up

ep1.waitFor();

ep2.waitFor();

ep3.waitFor();

Once an endpoint is fully initialized it starts accepting incoming connections and propagates I/O

activity notifications to the IOEventDispatch instance.

Asynchronous I/O based on NIO

21

One can obtain a set of registered endpoints at runtime, query the status of an endpoint at runtime,

and close it if desired.

ListeningIOReactor ioreactor = <...>

Set<ListenerEndpoint> eps = ioreactor.getEndpoints();

for (ListenerEndpoint ep: eps) {

 // Still active?

 System.out.println(ep.getAddress());

 if (ep.isClosed()) {

 // If not, has it terminated due to an exception?

 if (ep.getException() != null) {

 ep.getException().printStackTrace();

 }

 } else {

 ep.close();

 }

}

3.2.9. Connecting I/O reactors

ConnectingIOReactor represents an I/O reactor capable of establishing connections with remote hosts.

ConnectingIOReactor ioreactor = <...>

SessionRequest sessionRequest = ioreactor.connect(

 new InetSocketAddress("www.google.com", 80),

 null, null, null);

Opening a connection to a remote host usually tends to be a time consuming process and may take a

while to complete. One can monitor and control the process of session initialization by means of the

SessionRequestinterface.

// Make sure the request times out if connection

// has not been established after 1 sec

sessionRequest.setConnectTimeout(1000);

// Wait for the request to complete

sessionRequest.waitFor();

// Has request terminated due to an exception?

if (sessionRequest.getException() != null) {

 sessionRequest.getException().printStackTrace();

}

// Get hold of the new I/O session

IOSession iosession = sessionRequest.getSession();

SessionRequest implementations are expected to be thread-safe. Session request can be aborted at

any time by calling IOSession#cancel() from another thread of execution.

if (!sessionRequest.isCompleted()) {

 sessionRequest.cancel();

}

One can pass several optional parameters to the ConnectingIOReactor#connect() method to exert

a greater control over the process of session initialization.

A non-null local socket address parameter can be used to bind the socket to a specific local address.

Asynchronous I/O based on NIO

22

ConnectingIOReactor ioreactor = <...>

SessionRequest sessionRequest = ioreactor.connect(

 new InetSocketAddress("www.google.com", 80),

 new InetSocketAddress("192.168.0.10", 1234),

 null, null);

One can provide an attachment object, which will be added to the new session's context upon

initialization. This object can be used to pass an initial processing state to the protocol handler.

SessionRequest sessionRequest = ioreactor.connect(

 new InetSocketAddress("www.google.com", 80),

 null, new HttpHost("www.google.ru"), null);

IOSession iosession = sessionRequest.getSession();

HttpHost virtualHost = (HttpHost) iosession.getAttribute(

 IOSession.ATTACHMENT_KEY);

It is often desirable to be able to react to the completion of a session request asynchronously

without having to wait for it, blocking the current thread of execution. One can optionally provide

an implementation SessionRequestCallback interface to get notified of events related to session

requests, such as request completion, cancellation, failure or timeout.

ConnectingIOReactor ioreactor = <...>

SessionRequest sessionRequest = ioreactor.connect(

 new InetSocketAddress("www.google.com", 80), null, null,

 new SessionRequestCallback() {

 public void cancelled(SessionRequest request) {

 }

 public void completed(SessionRequest request) {

 System.out.println("new connection to " +

 request.getRemoteAddress());

 }

 public void failed(SessionRequest request) {

 if (request.getException() != null) {

 request.getException().printStackTrace();

 }

 }

 public void timeout(SessionRequest request) {

 }

 });

3.3. I/O reactor configuration

I/O reactors by default use system dependent configuration which in most cases should be sensible

enough.

IOReactorConfig config = IOReactorConfig.DEFAULT;

IOReactor ioreactor = new DefaultListeningIOReactor(config);

However in some cases custom settings may be necessary, for instance, in order to alter default socket

properties and timeout values. One should rarely need to change other parameters.

Asynchronous I/O based on NIO

23

IOReactorConfig config = IOReactorConfig.custom()

 .setTcpNoDelay(true)

 .setSoTimeout(5000)

 .setSoReuseAddress(true)

 .setConnectTimeout(5000)

 .build();

IOReactor ioreactor = new DefaultListeningIOReactor(config);

3.3.1. Queuing of I/O interest set operations

Several older JRE implementations (primarily from IBM) include what Java API documentation refers

to as a naive implementation of the java.nio.channels.SelectionKey class. The problem with

java.nio.channels.SelectionKey in such JREs is that reading or writing of the I/O interest set may

block indefinitely if the I/O selector is in the process of executing a select operation. HttpCore NIO can

be configured to operate in a special mode wherein I/O interest set operations are queued and executed

by on the dispatch thread only when the I/O selector is not engaged in a select operation.

IOReactorConfig config = IOReactorConfig.custom()

 .setInterestOpQueued(true)

 .build();

3.4. I/O reactor exception handling

Protocol specific exceptions as well as those I/O exceptions thrown in the course of interaction with

the session's channel are to be expected and are to be dealt with by specific protocol handlers. These

exceptions may result in termination of an individual session but should not affect the I/O reactor and all

other active sessions. There are situations, however, when the I/O reactor itself encounters an internal

problem such as an I/O exception in the underlying NIO classes or an unhandled runtime exception.

Those types of exceptions are usually fatal and will cause the I/O reactor to shut down automatically.

There is a possibility to override this behavior and prevent I/O reactors from shutting down

automatically in case of a runtime exception or an I/O exception in internal classes. This can be

accomplished by providing a custom implementation of the IOReactorExceptionHandler interface.

DefaultConnectingIOReactor ioreactor = <...>

ioreactor.setExceptionHandler(new IOReactorExceptionHandler() {

 public boolean handle(IOException ex) {

 if (ex instanceof BindException) {

 // bind failures considered OK to ignore

 return true;

 }

 return false;

 }

 public boolean handle(RuntimeException ex) {

 if (ex instanceof UnsupportedOperationException) {

 // Unsupported operations considered OK to ignore

 return true;

 }

 return false;

 }

});

Asynchronous I/O based on NIO

24

One needs to be very careful about discarding exceptions indiscriminately. It is often much better to

let the I/O reactor shut down itself cleanly and restart it rather than leaving it in an inconsistent or

unstable state.

3.4.1. I/O reactor audit log

If an I/O reactor is unable to automatically recover from an I/O or a runtime exception it will enter the

shutdown mode. First off, it will close all active listeners and cancel all pending new session requests.

Then it will attempt to close all active I/O sessions gracefully giving them some time to flush pending

output data and terminate cleanly. Lastly, it will forcibly shut down those I/O sessions that still remain

active after the grace period. This is a fairly complex process, where many things can fail at the same

time and many different exceptions can be thrown in the course of the shutdown process. The I/O

reactor will record all exceptions thrown during the shutdown process, including the original one that

actually caused the shutdown in the first place, in an audit log. One can examine the audit log and

decide whether it is safe to restart the I/O reactor.

DefaultConnectingIOReactor ioreactor = <...>

// Give it 5 sec grace period

ioreactor.shutdown(5000);

List<ExceptionEvent> events = ioreactor.getAuditLog();

for (ExceptionEvent event: events) {

 System.err.println("Time: " + event.getTimestamp());

 event.getCause().printStackTrace();

}

3.5. Non-blocking HTTP connections

Effectively non-blocking HTTP connections are wrappers around IOSession with HTTP specific

functionality. Non-blocking HTTP connections are stateful and not thread-safe. Input / output

operations on non-blocking HTTP connections should be restricted to the dispatch events triggered by

the I/O event dispatch thread.

3.5.1. Execution context of non-blocking HTTP connections

Non-blocking HTTP connections are not bound to a particular thread of execution and therefore

they need to maintain their own execution context. Each non-blocking HTTP connection has an

HttpContext instance associated with it, which can be used to maintain a processing state. The

HttpContext instance is thread-safe and can be manipulated from multiple threads.

DefaultNHttpClientConnection conn = <...>

Object myStateObject = <...>

HttpContext context = conn.getContext();

context.setAttribute("state", myStateObject);

3.5.2. Working with non-blocking HTTP connections

At any point of time one can obtain the request and response objects currently being transferred over

the non-blocking HTTP connection. Any of these objects, or both, can be null if there is no incoming

or outgoing message currently being transferred.

NHttpConnection conn = <...>

Asynchronous I/O based on NIO

25

HttpRequest request = conn.getHttpRequest();

if (request != null) {

 System.out.println("Transferring request: " +

 request.getRequestLine());

}

HttpResponse response = conn.getHttpResponse();

if (response != null) {

 System.out.println("Transferring response: " +

 response.getStatusLine());

}

However, please note that the current request and the current response may not necessarily represent

the same message exchange! Non-blocking HTTP connections can operate in a full duplex mode. One

can process incoming and outgoing messages completely independently from one another. This makes

non-blocking HTTP connections fully pipelining capable, but at same time implies that this is the job

of the protocol handler to match logically related request and the response messages.

Over-simplified process of submitting a request on the client side may look like this:

NHttpClientConnection conn = <...>

// Obtain execution context

HttpContext context = conn.getContext();

// Obtain processing state

Object state = context.getAttribute("state");

// Generate a request based on the state information

HttpRequest request = new BasicHttpRequest("GET", "/");

conn.submitRequest(request);

System.out.println(conn.isRequestSubmitted());

Over-simplified process of submitting a response on the server side may look like this:

NHttpServerConnection conn = <...>

// Obtain execution context

HttpContext context = conn.getContext();

// Obtain processing state

Object state = context.getAttribute("state");

// Generate a response based on the state information

HttpResponse response = new BasicHttpResponse(HttpVersion.HTTP_1_1,

 HttpStatus.SC_OK, "OK");

BasicHttpEntity entity = new BasicHttpEntity();

entity.setContentType("text/plain");

entity.setChunked(true);

response.setEntity(entity);

conn.submitResponse(response);

System.out.println(conn.isResponseSubmitted());

Please note that one should rarely need to transmit messages using these low level methods and should

use appropriate higher level HTTP service implementations instead.

3.5.3. HTTP I/O control

All non-blocking HTTP connections classes implement IOControl interface, which represents

a subset of connection functionality for controlling interest in I/O even notifications. IOControl

instances are expected to be fully thread-safe. Therefore IOControl can be used to request / suspend

I/O event notifications from any thread.

Asynchronous I/O based on NIO

26

One must take special precautions when interacting with non-blocking connections. HttpRequest and

HttpResponse are not thread-safe. It is generally advisable that all input / output operations on a non-

blocking connection are executed from the I/O event dispatch thread.

The following pattern is recommended:

• Use IOControl interface to pass control over connection's I/O events to another thread / session.

• If input / output operations need be executed on that particular connection, store all the required

information (state) in the connection context and request the appropriate I/O operation by calling

IOControl#requestInput() or IOControl#requestOutput() method.

• Execute the required operations from the event method on the dispatch thread using information

stored in connection context.

Please note all operations that take place in the event methods should not block for too long, because

while the dispatch thread remains blocked in one session, it is unable to process events for all other

sessions. I/O operations with the underlying channel of the session are not a problem as they are

guaranteed to be non-blocking.

3.5.4. Non-blocking content transfer

The process of content transfer for non-blocking connections works completely differently compared

to that of blocking connections, as non-blocking connections need to accommodate to the asynchronous

nature of the NIO model. The main distinction between two types of connections is inability to use

the usual, but inherently blocking java.io.InputStream and java.io.OutputStream classes to

represent streams of inbound and outbound content. HttpCore NIO provides ContentEncoder and

ContentDecoder interfaces to handle the process of asynchronous content transfer. Non-blocking

HTTP connections will instantiate the appropriate implementation of a content codec based on

properties of the entity enclosed with the message.

Non-blocking HTTP connections will fire input events until the content entity is fully transferred.

ContentDecoder decoder = <...>

//Read data in

ByteBuffer dst = ByteBuffer.allocate(2048);

decoder.read(dst);

// Decode will be marked as complete when

// the content entity is fully transferred

if (decoder.isCompleted()) {

 // Done

}

Non-blocking HTTP connections will fire output events until the content entity is marked as fully

transferred.

ContentEncoder encoder = <...>

// Prepare output data

ByteBuffer src = ByteBuffer.allocate(2048);

// Write data out

encoder.write(src);

// Mark content entity as fully transferred when done

encoder.complete();

Asynchronous I/O based on NIO

27

Please note, one still has to provide an HttpEntity instance when submitting an entity enclosing

message to the non-blocking HTTP connection. Properties of that entity will be used to initialize an

ContentEncoder instance to be used for transferring entity content. Non-blocking HTTP connections,

however, ignore inherently blocking HttpEntity#getContent() and HttpEntity#writeTo()

methods of the enclosed entities.

NHttpServerConnection conn = <...>

HttpResponse response = new BasicHttpResponse(HttpVersion.HTTP_1_1,

 HttpStatus.SC_OK, "OK");

BasicHttpEntity entity = new BasicHttpEntity();

entity.setContentType("text/plain");

entity.setChunked(true);

entity.setContent(null);

response.setEntity(entity);

conn.submitResponse(response);

Likewise, incoming entity enclosing message will have an HttpEntity instance associated with them,

but an attempt to call HttpEntity#getContent() or HttpEntity#writeTo() methods will cause an

java.lang.IllegalStateException. The HttpEntity instance can be used to determine properties

of the incoming entity such as content length.

NHttpClientConnection conn = <...>

HttpResponse response = conn.getHttpResponse();

HttpEntity entity = response.getEntity();

if (entity != null) {

 System.out.println(entity.getContentType());

 System.out.println(entity.getContentLength());

 System.out.println(entity.isChunked());

}

3.5.5. Supported non-blocking content transfer mechanisms

Default implementations of the non-blocking HTTP connection interfaces support three content

transfer mechanisms defined by the HTTP/1.1 specification:

• Content-Length delimited: The end of the content entity is determined by the value of the

Content-Length header. Maximum entity length: Long#MAX_VALUE.

• Identity coding: The end of the content entity is demarcated by closing the underlying connection

(end of stream condition). For obvious reasons the identity encoding can only be used on the server

side. Max entity length: unlimited.

• Chunk coding: The content is sent in small chunks. Max entity length: unlimited.

The appropriate content codec will be created automatically depending on properties of the entity

enclosed with the message.

3.5.6. Direct channel I/O

Content codes are optimized to read data directly from or write data directly to the underlying I/O

session's channel, whenever possible avoiding intermediate buffering in a session buffer. Moreover,

Asynchronous I/O based on NIO

28

those codecs that do not perform any content transformation (Content-Length delimited and identity

codecs, for example) can leverage NIO java.nio.FileChannel methods for significantly improved

performance of file transfer operations both inbound and outbound.

If the actual content decoder implements FileContentDecoder one can make use of its methods to

read incoming content directly to a file bypassing an intermediate java.nio.ByteBuffer.

ContentDecoder decoder = <...>

//Prepare file channel

FileChannel dst;

//Make use of direct file I/O if possible

if (decoder instanceof FileContentDecoder) {

 long Bytesread = ((FileContentDecoder) decoder)

 .transfer(dst, 0, 2048);

 // Decode will be marked as complete when

 // the content entity is fully transmitted

 if (decoder.isCompleted()) {

 // Done

 }

}

If the actual content encoder implements FileContentEncoder one can make use of its methods to

write outgoing content directly from a file bypassing an intermediate java.nio.ByteBuffer.

ContentEncoder encoder = <...>

// Prepare file channel

FileChannel src;

// Make use of direct file I/O if possible

if (encoder instanceof FileContentEncoder) {

 // Write data out

 long bytesWritten = ((FileContentEncoder) encoder)

 .transfer(src, 0, 2048);

 // Mark content entity as fully transferred when done

 encoder.complete();

}

3.6. HTTP I/O event dispatchers

HTTP I/O event dispatchers serve to convert generic I/O events triggered by an I/O reactor to HTTP

protocol specific events. They rely on NHttpClientEventHandler and NHttpServerEventHandler

interfaces to propagate HTTP protocol events to a HTTP protocol handler.

Server side HTTP I/O events as defined by the NHttpServerEventHandler interface:

• connected: Triggered when a new incoming connection has been created.

• requestReceived: Triggered when a new HTTP request is received. The connection passed as a

parameter to this method is guaranteed to return a valid HTTP request object. If the request received

encloses a request entity this method will be followed a series of inputReady events to transfer the

request content.

• inputReady: Triggered when the underlying channel is ready for reading a new portion

of the request entity through the corresponding content decoder. If the content consumer is

unable to process the incoming content, input event notifications can temporarily suspended

using IOControl interface (super interface of NHttpServerConnection). Please note that the

Asynchronous I/O based on NIO

29

NHttpServerConnection and ContentDecoder objects are not thread-safe and should only be used

within the context of this method call. The IOControl object can be shared and used on other thread

to resume input event notifications when the handler is capable of processing more content.

• responseReady: Triggered when the connection is ready to accept new HTTP response. The

protocol handler does not have to submit a response if it is not ready.

• outputReady: Triggered when the underlying channel is ready for writing a next portion

of the response entity through the corresponding content encoder. If the content producer is

unable to generate the outgoing content, output event notifications can be temporarily suspended

using IOControl interface (super interface of NHttpServerConnection). Please note that the

NHttpServerConnection and ContentEncoder objects are not thread-safe and should only be used

within the context of this method call. The IOControl object can be shared and used on other thread

to resume output event notifications when more content is made available.

• exception: Triggered when an I/O error occurrs while reading from or writing to the underlying

channel or when an HTTP protocol violation occurs while receiving an HTTP request.

• timeout: Triggered when no input is detected on this connection over the maximum period of

inactivity.

• closed: Triggered when the connection has been closed.

Client side HTTP I/O events as defined by the NHttpClientEventHandler interface:

• connected: Triggered when a new outgoing connection has been created. The attachment object

passed as a parameter to this event is an arbitrary object that was attached to the session request.

• requestReady: Triggered when the connection is ready to accept new HTTP request. The

protocol handler does not have to submit a request if it is not ready.

• outputReady: Triggered when the underlying channel is ready for writing a next portion

of the request entity through the corresponding content encoder. If the content producer is

unable to generate the outgoing content, output event notifications can be temporarily suspended

using IOControl interface (super interface of NHttpClientConnection). Please note that the

NHttpClientConnection and ContentEncoder objects are not thread-safe and should only be used

within the context of this method call. The IOControl object can be shared and used on other thread

to resume output event notifications when more content is made available.

• responseReceived: Triggered when an HTTP response is received. The connection passed as

a parameter to this method is guaranteed to return a valid HTTP response object. If the response

received encloses a response entity this method will be followed a series of inputReady events to

transfer the response content.

• inputReady: Triggered when the underlying channel is ready for reading a new portion

of the response entity through the corresponding content decoder. If the content consumer is

unable to process the incoming content, input event notifications can be temporarily suspended

using IOControl interface (super interface of NHttpClientConnection). Please note that the

NHttpClientConnection and ContentDecoder objects are not thread-safe and should only be used

within the context of this method call. The IOControl object can be shared and used on other thread

to resume input event notifications when the handler is capable of processing more content.

Asynchronous I/O based on NIO

30

• exception: Triggered when an I/O error occurs while reading from or writing to the underlying

channel or when an HTTP protocol violation occurs while receiving an HTTP response.

• timeout: Triggered when no input is detected on this connection over the maximum period of

inactivity.

• closed: Triggered when the connection has been closed.

3.7. Non-blocking HTTP content producers

As discussed previously the process of content transfer for non-blocking connections works completely

differently compared to that for blocking connections. For obvious reasons classic I/O abstraction

based on inherently blocking java.io.InputStream and java.io.OutputStream classes is not

well suited for asynchronous data transfer. In order to avoid inefficient and potentially blocking I/

O operation redirection through java.nio.channels.Channles#newChannel non-blocking HTTP

entities are expected to implement NIO specific extension interface HttpAsyncContentProducer.

The HttpAsyncContentProducer interface defines several additional method for efficient streaming

of content to a non-blocking HTTP connection:

• produceContent: Invoked to write out a chunk of content to the ContentEncoder .

The IOControl interface can be used to suspend output events if the entity is temporarily

unable to produce more content. When all content is finished, the producer MUST call

ContentEncoder#complete(). Failure to do so may cause the entity to be incorrectly delimited.

Please note that the ContentEncoder object is not thread-safe and should only be used within the

context of this method call. The IOControl object can be shared and used on other thread resume

output event notifications when more content is made available.

• isRepeatable: Determines whether or not this producer is capable of producing its content more

than once. Repeatable content producers are expected to be able to recreate their content even after

having been closed.

• close: Closes the producer and releases all resources currently allocated by it.

3.7.1. Creating non-blocking entities

Several HTTP entity implementations included in HttpCore NIO support HttpAsyncContentProducer

interface:

• NByteArrayEntity

• NStringEntity

• NFileEntity

3.7.1.1. NByteArrayEntity

This is a simple self-contained repeatable entity, which receives its content from a given byte array.

This byte array is supplied to the constructor.

NByteArrayEntity entity = new NByteArrayEntity(new byte[] {1, 2, 3});

Asynchronous I/O based on NIO

31

3.7.1.2. NStringEntity

This is a simple, self-contained, repeatable entity that retrieves its data from a java.lang.String

object. It has 2 constructors, one simply constructs with a given string where the other also takes a

character encoding for the data in the java.lang.String.

NStringEntity myEntity = new NStringEntity("important message",

 Consts.UTF_8);

3.7.1.3. NFileEntity

This entity reads its content body from a file. This class is mostly used to stream large files of different

types, so one needs to supply the content type of the file to make sure the content can be correctly

recognized and processed by the recipient.

File staticFile = new File("/path/to/myapp.jar");

NFileEntity entity = new NFileEntity(staticFile,

 ContentType.create("application/java-archive", null));

The NHttpEntity will make use of the direct channel I/O whenever possible, provided the content

encoder is capable of transferring data directly from a file to the socket of the underlying connection.

3.8. Non-blocking HTTP protocol handlers

3.8.1. Asynchronous HTTP service

HttpAsyncService is a fully asynchronous HTTP server side protocol handler based on the non-

blocking (NIO) I/O model. HttpAsyncService translates individual events fired through the

NHttpServerEventHandler interface into logically related HTTP message exchanges.

Upon receiving an incoming request the HttpAsyncService verifies the message for compliance

with the server expectations using HttpAsyncExpectationVerifier, if provided, and

then HttpAsyncRequestHandlerResolver is used to resolve the request URI to a particular

HttpAsyncRequestHandler intended to handle the request with the given URI. The protocol handler

uses the selected HttpAsyncRequestHandler instance to process the incoming request and to generate

an outgoing response.

HttpAsyncService relies on HttpProcessor to generate mandatory protocol headers for all outgoing

messages and apply common, cross-cutting message transformations to all incoming and outgoing

messages, whereas individual HTTP request handlers are expected to implement application specific

content generation and processing.

HttpProcessor httpproc = HttpProcessorBuilder.create()

 .add(new ResponseDate())

 .add(new ResponseServer("MyServer-HTTP/1.1"))

 .add(new ResponseContent())

 .add(new ResponseConnControl())

 .build();

HttpAsyncService protocolHandler = new HttpAsyncService(httpproc, null);

IOEventDispatch ioEventDispatch = new DefaultHttpServerIODispatch(

 protocolHandler,

 new DefaultNHttpServerConnectionFactory(ConnectionConfig.DEFAULT));

Asynchronous I/O based on NIO

32

ListeningIOReactor ioreactor = new DefaultListeningIOReactor();

ioreactor.execute(ioEventDispatch);

3.8.1.1. Non-blocking HTTP request handlers

HttpAsyncRequestHandler represents a routine for asynchronous processing of a specific group of

non-blocking HTTP requests. Protocol handlers are designed to take care of protocol specific aspects,

whereas individual request handlers are expected to take care of application specific HTTP processing.

The main purpose of a request handler is to generate a response object with a content entity to be sent

back to the client in response to the given request.

HttpAsyncRequestHandler<HttpRequest> rh = new HttpAsyncRequestHandler<HttpRequest>() {

 public HttpAsyncRequestConsumer<HttpRequest> processRequest(

 final HttpRequest request,

 final HttpContext context) {

 // Buffer request content in memory for simplicity

 return new BasicAsyncRequestConsumer();

 }

 public void handle(

 final HttpRequest request,

 final HttpAsyncExchange httpexchange,

 final HttpContext context) throws HttpException, IOException {

 HttpResponse response = httpexchange.getResponse();

 response.setStatusCode(HttpStatus.SC_OK);

 NFileEntity body = new NFileEntity(new File("static.html"),

 ContentType.create("text/html", Consts.UTF_8));

 response.setEntity(body);

 httpexchange.submitResponse(new BasicAsyncResponseProducer(response));

 }

};

Request handlers must be implemented in a thread-safe manner. Similarly to servlets, request handlers

should not use instance variables unless access to those variables are synchronized.

3.8.1.2. Asynchronous HTTP exchange

The most fundamental difference of the non-blocking request handlers compared to their blocking

counterparts is ability to defer transmission of the HTTP response back to the client without

blocking the I/O thread by delegating the process of handling the HTTP request to a worker

thread or another service. The instance of HttpAsyncExchange passed as a parameter to the

HttpAsyncRequestHandler#handle method to submit a response as at a later point once response

content becomes available.

The HttpAsyncExchange interface can be interacted with using the following methods:

• getRequest: Returns the received HTTP request message.

• getResponse: Returns the default HTTP response message that can submitted once ready.

• submitResponse: Submits an HTTP response and completed the message exchange.

• isCompleted: Determines whether or not the message exchange has been completed.

• setCallback: Sets Cancellable callback to be invoked in case the underlying connection times

out or gets terminated prematurely by the client. This callback can be used to cancel a long running

response generating process if a response is no longer needed.

Asynchronous I/O based on NIO

33

• setTimeout: Sets timeout for this message exchange.

• getTimeout: Returns timeout for this message exchange.

HttpAsyncRequestHandler<HttpRequest> rh = new HttpAsyncRequestHandler<HttpRequest>() {

 public HttpAsyncRequestConsumer<HttpRequest> processRequest(

 final HttpRequest request,

 final HttpContext context) {

 // Buffer request content in memory for simplicity

 return new BasicAsyncRequestConsumer();

 }

 public void handle(

 final HttpRequest request,

 final HttpAsyncExchange httpexchange,

 final HttpContext context) throws HttpException, IOException {

 new Thread() {

 @Override

 public void run() {

 try {

 Thread.sleep(10);

 }

 catch(InterruptedException ie) {}

 HttpResponse response = httpexchange.getResponse();

 response.setStatusCode(HttpStatus.SC_OK);

 NFileEntity body = new NFileEntity(new File("static.html"),

 ContentType.create("text/html", Consts.UTF_8));

 response.setEntity(body);

 httpexchange.submitResponse(new BasicAsyncResponseProducer(response));

 }

 }.start();

 }

};

Please note HttpResponse instances are not thread-safe and may not be modified concurrently. Non-

blocking request handlers must ensure HTTP response cannot be accessed by more than one thread

at a time.

3.8.1.3. Asynchronous HTTP request consumer

HttpAsyncRequestConsumer facilitates the process of asynchronous processing of HTTP requests. It

is a callback interface used by HttpAsyncRequestHandlers to process an incoming HTTP request

message and to stream its content from a non-blocking server side HTTP connection.

HTTP I/O events and methods as defined by the HttpAsyncRequestConsumer interface:

• requestReceived: Invoked when a HTTP request message is received.

• consumeContent: Invoked to process a chunk of content from the ContentDecoder. The

IOControl interface can be used to suspend input events if the consumer is temporarily unable

to consume more content. The consumer can use the ContentDecoder#isCompleted() method

to find out whether or not the message content has been fully consumed. Please note that the

ContentDecoder object is not thread-safe and should only be used within the context of this method

call. The IOControl object can be shared and used on other thread to resume input event notifications

Asynchronous I/O based on NIO

34

when the consumer is capable of processing more content. This event is invoked only if the incoming

request message has a content entity enclosed in it.

• requestCompleted: Invoked to signal that the request has been fully processed.

• failed: Invoked to signal that the request processing terminated abnormally.

• getException: Returns an exception in case of an abnormal termination. This method returns

null if the request execution is still ongoing or if it completed successfully.

• getResult: Returns a result of the request execution, when available. This method returns null

if the request execution is still ongoing.

• isDone: Determines whether or not the request execution completed. If the request processing

terminated normally getResult() can be used to obtain the result. If the request processing

terminated abnormally getException() can be used to obtain the cause.

• close: Closes the consumer and releases all resources currently allocated by it.

HttpAsyncRequestConsumer implementations are expected to be thread-safe.

BasicAsyncRequestConsumer is a very basic implementation of the HttpAsyncRequestConsumer

interface shipped with the library. Please note that this consumer buffers request content in memory

and therefore should be used for relatively small request messages.

3.8.1.4. Asynchronous HTTP response producer

HttpAsyncResponseProducer facilitates the process of asynchronous generation of HTTP responses.

It is a callback interface used by HttpAsyncRequestHandlers to generate an HTTP response message

and to stream its content to a non-blocking server side HTTP connection.

HTTP I/O events and methods as defined by the HttpAsyncResponseProducer interface:

• generateResponse: Invoked to generate a HTTP response message header.

• produceContent: Invoked to write out a chunk of content to the ContentEncoder. The

IOControl interface can be used to suspend output events if the producer is temporarily

unable to produce more content. When all content is finished, the producer MUST call

ContentEncoder#complete(). Failure to do so may cause the entity to be incorrectly delimited.

Please note that the ContentEncoder object is not thread-safe and should only be used within the

context of this method call. The IOControl object can be shared and used on other thread resume

output event notifications when more content is made available. This event is invoked only for if the

outgoing response message has a content entity enclosed in it, that is HttpResponse#getEntity()

returns null.

• responseCompleted: Invoked to signal that the response has been fully written out.

• failed: Invoked to signal that the response processing terminated abnormally.

• close: Closes the producer and releases all resources currently allocated by it.

HttpAsyncResponseProducer implementations are expected to be thread-safe.

BasicAsyncResponseProducer is a basic implementation of the HttpAsyncResponseProducer

interface shipped with the library. The producer can make use of the HttpAsyncContentProducer

Asynchronous I/O based on NIO

35

interface to efficiently stream out message content to a non-blocking HTTP connection, if it is

implemented by the HttpEntity enclosed in the response.

3.8.1.5. Non-blocking request handler resolver

The management of non-blocking HTTP request handlers is quite similar to that of blocking HTTP

request handlers. Usually an instance of HttpAsyncRequestHandlerResolver is used to maintain a

registry of request handlers and to matches a request URI to a particular request handler. HttpCore

includes only a very simple implementation of the request handler resolver based on a trivial pattern

matching algorithm: HttpAsyncRequestHandlerRegistry supports only three formats: *, <uri>* and

*<uri>.

HttpAsyncRequestHandler<?> myRequestHandler1 = <...>

HttpAsyncRequestHandler<?> myRequestHandler2 = <...>

HttpAsyncRequestHandler<?> myRequestHandler3 = <...>

UriHttpAsyncRequestHandlerMapper handlerReqistry =

 new UriHttpAsyncRequestHandlerMapper();

handlerReqistry.register("/service/*", myRequestHandler1);

handlerReqistry.register("*.do", myRequestHandler2);

handlerReqistry.register("*", myRequestHandler3);

Users are encouraged to provide more sophisticated implementations of

HttpAsyncRequestHandlerResolver, for instance, based on regular expressions.

3.8.2. Asynchronous HTTP request executor

HttpAsyncRequestExecutor is a fully asynchronous client side HTTP protocol handler based on

the NIO (non-blocking) I/O model. HttpAsyncRequestExecutor translates individual events fired

through the NHttpClientEventHandler interface into logically related HTTP message exchanges.

HttpAsyncRequestExecutor relies on HttpAsyncRequestExecutionHandler to implement

application specific content generation and processing and to handle logically related

series of HTTP request / response exchanges, which may also span across multiple

connections. HttpProcessor provided by the HttpAsyncRequestExecutionHandler instance

will be used to generate mandatory protocol headers for all outgoing messages and apply

common, cross-cutting message transformations to all incoming and outgoing messages. The

caller is expected to pass an instance of HttpAsyncRequestExecutionHandler to be used

for the next series of HTTP message exchanges through the connection context using

HttpAsyncRequestExecutor#HTTP_HANDLER attribute. HTTP exchange sequence is considered

complete when the HttpAsyncRequestExecutionHandler#isDone() method returns true.

HttpAsyncRequestExecutor ph = new HttpAsyncRequestExecutor();

IOEventDispatch ioEventDispatch = new DefaultHttpClientIODispatch(ph,

 new DefaultNHttpClientConnectionFactory(ConnectionConfig.DEFAULT));

ConnectingIOReactor ioreactor = new DefaultConnectingIOReactor();

ioreactor.execute(ioEventDispatch);

The HttpAsyncRequester utility class can be used to abstract away low level details of

HttpAsyncRequestExecutionHandler management. Please note HttpAsyncRequester supports

single HTTP request / response exchanges only. It does not support HTTP authentication and does not

handle redirects automatically.

Asynchronous I/O based on NIO

36

HttpProcessor httpproc = HttpProcessorBuilder.create()

 .add(new RequestContent())

 .add(new RequestTargetHost())

 .add(new RequestConnControl())

 .add(new RequestUserAgent("MyAgent-HTTP/1.1"))

 .add(new RequestExpectContinue(true))

 .build();

HttpAsyncRequester requester = new HttpAsyncRequester(httpproc);

NHttpClientConnection conn = <...>

Future<HttpResponse> future = requester.execute(

 new BasicAsyncRequestProducer(

 new HttpHost("localhost"),

 new BasicHttpRequest("GET", "/")),

 new BasicAsyncResponseConsumer(),

 conn);

HttpResponse response = future.get();

3.8.2.1. Asynchronous HTTP request producer

HttpAsyncRequestProducer facilitates the process of asynchronous generation of HTTP requests. It

is a callback interface whose methods get invoked to generate an HTTP request message and to stream

message content to a non-blocking client side HTTP connection.

Repeatable request producers capable of generating the same request message more than once can be

reset to their initial state by calling the resetRequest() method, at which point request producers

are expected to release currently allocated resources that are no longer needed or re-acquire resources

needed to repeat the process.

HTTP I/O events and methods as defined by the HttpAsyncRequestProducer interface:

• getTarget: Invoked to obtain the request target host.

• generateRequest: Invoked to generate a HTTP request message header. The message is expected

to implement the HttpEntityEnclosingRequest interface if it is to enclose a content entity.

• produceContent: Invoked to write out a chunk of content to the ContentEncoder. The

IOControl interface can be used to suspend output events if the producer is temporarily

unable to produce more content. When all content is finished, the producer MUST call

ContentEncoder#complete(). Failure to do so may cause the entity to be incorrectly delimited

Please note that the ContentEncoder object is not thread-safe and should only be used within

the context of this method call. The IOControl object can be shared and used on other

thread resume output event notifications when more content is made available. This event is

invoked only for if the outgoing request message has a content entity enclosed in it, that is

HttpEntityEnclosingRequest#getEntity() returns null .

• requestCompleted: Invoked to signal that the request has been fully written out.

• failed: Invoked to signal that the request processing terminated abnormally.

• resetRequest: Invoked to reset the producer to its initial state. Repeatable request producers are

expected to release currently allocated resources that are no longer needed or re-acquire resources

needed to repeat the process.

• close: Closes the producer and releases all resources currently allocated by it.

HttpAsyncRequestProducer implementations are expected to be thread-safe.

Asynchronous I/O based on NIO

37

BasicAsyncRequestProducer is a basic implementation of the HttpAsyncRequestProducer interface

shipped with the library. The producer can make use of the HttpAsyncContentProducer interface to

efficiently stream out message content to a non-blocking HTTP connection, if it is implemented by

the HttpEntity enclosed in the request.

3.8.2.2. Asynchronous HTTP response consumer

HttpAsyncResponseConsumer facilitates the process of asynchronous processing of HTTP responses.

It is a callback interface whose methods get invoked to process an HTTP response message and to

stream message content from a non-blocking client side HTTP connection.

HTTP I/O events and methods as defined by the HttpAsyncResponseConsumer interface:

• responseReceived: Invoked when a HTTP response message is received.

• consumeContent: Invoked to process a chunk of content from the ContentDecoder. The

IOControl interface can be used to suspend input events if the consumer is temporarily unable

to consume more content. The consumer can use the ContentDecoder#isCompleted() method

to find out whether or not the message content has been fully consumed. Please note that the

ContentDecoder object is not thread-safe and should only be used within the context of this method

call. The IOControl object can be shared and used on other thread to resume input event notifications

when the consumer is capable of processing more content. This event is invoked only for if the

incoming response message has a content entity enclosed in it.

• responseCompleted: Invoked to signal that the response has been fully processed.

• failed: Invoked to signal that the response processing terminated abnormally.

• getException: Returns an exception in case of an abnormal termination. This method returns

null if the response processing is still ongoing or if it completed successfully.

• getResult: Returns a result of the response processing, when available. This method returns

null if the response processing is still ongoing.

• isDone: Determines whether or not the response processing completed. If the response processing

terminated normally getResult() can be used to obtain the result. If the response processing

terminated abnormally getException() can be used to obtain the cause.

• close: Closes the consumer and releases all resources currently allocated by it.

HttpAsyncResponseConsumer implementations are expected to be thread-safe.

BasicAsyncResponseConsumer is a very basic implementation of the HttpAsyncResponseConsumer

interface shipped with the library. Please note that this consumer buffers response content in memory

and therefore should be used for relatively small response messages.

3.9. Non-blocking connection pools

Non-blocking connection pools are quite similar to blocking one with one significant distinction that

they have to reply an I/O reactor to establish new connections. As a result connections leased from

a non-blocking pool are returned fully initialized and already bound to a particular I/O session. Non-

blocking connections managed by a connection pool cannot be bound to an arbitrary I/O session.

Asynchronous I/O based on NIO

38

HttpHost target = new HttpHost("localhost");

ConnectingIOReactor ioreactor = <...>

BasicNIOConnPool connpool = new BasicNIOConnPool(ioreactor);

connpool.lease(target, null,

 10, TimeUnit.SECONDS,

 new FutureCallback<BasicNIOPoolEntry>() {

 @Override

 public void completed(BasicNIOPoolEntry entry) {

 NHttpClientConnection conn = entry.getConnection();

 System.out.println("Connection successfully leased");

 // Update connection context and request output

 conn.requestOutput();

 }

 @Override

 public void failed(Exception ex) {

 System.out.println("Connection request failed");

 ex.printStackTrace();

 }

 @Override

 public void cancelled() {

 }

 });

Please note due to event-driven nature of asynchronous communication model it is quite difficult

to ensure proper release of persistent connections back to the pool. One can make use of

HttpAsyncRequester to handle connection lease and release behind the scene.

ConnectingIOReactor ioreactor = <...>

HttpProcessor httpproc = <...>

BasicNIOConnPool connpool = new BasicNIOConnPool(ioreactor);

HttpAsyncRequester requester = new HttpAsyncRequester(httpproc);

HttpHost target = new HttpHost("localhost");

Future<HttpResponse> future = requester.execute(

 new BasicAsyncRequestProducer(

 new HttpHost("localhost"),

 new BasicHttpRequest("GET", "/")),

 new BasicAsyncResponseConsumer(),

 connpool);

3.10. Pipelined request execution

In addition to the normal request / response execution mode HttpAsyncRequester is also capable of

executing requests in the so called pipelined mode whereby several requests are immediately written

out to the underlying connection. Please note that entity enclosing requests can be executed in the

pipelined mode but the 'expect: continue' handshake should be disabled (request messages should

contains no 'Expect: 100-continue' header).

HttpProcessor httpproc = <...>

HttpAsyncRequester requester = new HttpAsyncRequester(httpproc);

HttpHost target = new HttpHost("www.apache.org");

List<BasicAsyncRequestProducer> requestProducers = Arrays.asList(

 new BasicAsyncRequestProducer(target, new BasicHttpRequest("GET", "/index.html")),

 new BasicAsyncRequestProducer(target, new BasicHttpRequest("GET", "/foundation/index.html")),

 new BasicAsyncRequestProducer(target, new BasicHttpRequest("GET", "/foundation/how-it-works.html"))

);

List<BasicAsyncResponseConsumer> responseConsumers = Arrays.asList(

 new BasicAsyncResponseConsumer(),

Asynchronous I/O based on NIO

39

 new BasicAsyncResponseConsumer(),

 new BasicAsyncResponseConsumer()

);

HttpCoreContext context = HttpCoreContext.create();

Future<List<HttpResponse>> future = requester.executePipelined(

 target, requestProducers, responseConsumers, pool, context, null);

Please note that older web servers and especially older HTTP proxies may be unable to handle pipelined

requests correctly. Use the pipelined execution mode with caution.

3.11. Non-blocking TLS/SSL

3.11.1. SSL I/O session

SSLIOSession is a decorator class intended to transparently extend any arbitrary IOSession with

transport layer security capabilities based on the SSL/TLS protocol. Default HTTP connection

implementations and protocol handlers should be able to work with SSL sessions without special

preconditions or modifications.

SSLContext sslcontext = SSLContext.getInstance("Default");

sslcontext.init(null, null, null);

// Plain I/O session

IOSession iosession = <...>

SSLIOSession sslsession = new SSLIOSession(

 iosession, SSLMode.CLIENT, sslcontext, null);

iosession.setAttribute(SSLIOSession.SESSION_KEY, sslsession);

NHttpClientConnection conn = new DefaultNHttpClientConnection(

 sslsession, 8 * 1024);

One can also use SSLNHttpClientConnectionFactory or SSLNHttpServerConnectionFactory

classes to conveniently create SSL encrypterd HTTP connections.

SSLContext sslcontext = SSLContext.getInstance("Default");

sslcontext.init(null, null, null);

// Plain I/O session

IOSession iosession = <...>

SSLNHttpClientConnectionFactory connfactory = new SSLNHttpClientConnectionFactory(

 sslcontext, null, ConnectionConfig.DEFAULT);

NHttpClientConnection conn = connfactory.createConnection(iosession);

3.11.1.1. SSL setup handler

Applications can customize various aspects of the TLS/SSl protocol by passing a custom

implementation of the SSLSetupHandler interface.

SSL events as defined by the SSLSetupHandler interface:

• initalize: Triggered when the SSL connection is being initialized. The handler can use this

callback to customize properties of the javax.net.ssl.SSLEngine used to establish the SSL

session.

• verify: Triggered when the SSL connection has been established and initial SSL handshake

has been successfully completed. The handler can use this callback to verify properties of the

SSLSession. For instance this would be the right place to enforce SSL cipher strength, validate

certificate chain and do hostname checks.

Asynchronous I/O based on NIO

40

SSLContext sslcontext = SSLContexts.createDefault();

// Plain I/O session

IOSession iosession = <...>

SSLIOSession sslsession = new SSLIOSession(

 iosession, SSLMode.CLIENT, sslcontext, new SSLSetupHandler() {

 public void initalize(final SSLEngine sslengine) throws SSLException {

 // Enforce TLS and disable SSL

 sslengine.setEnabledProtocols(new String[] {

 "TLSv1",

 "TLSv1.1",

 "TLSv1.2" });

 // Enforce strong ciphers

 sslengine.setEnabledCipherSuites(new String[] {

 "TLS_RSA_WITH_AES_256_CBC_SHA",

 "TLS_DHE_RSA_WITH_AES_256_CBC_SHA",

 "TLS_DHE_DSS_WITH_AES_256_CBC_SHA" });

 }

 public void verify(

 final IOSession iosession,

 final SSLSession sslsession) throws SSLException {

 X509Certificate[] certs = sslsession.getPeerCertificateChain();

 // Examine peer certificate chain

 for (X509Certificate cert: certs) {

 System.out.println(cert.toString());

 }

 }

});

SSLSetupHandler impelemntations can also be used with the SSLNHttpClientConnectionFactory or

SSLNHttpServerConnectionFactory classes.

SSLContext sslcontext = SSLContexts.createDefault();

// Plain I/O session

IOSession iosession = <...>

SSLSetupHandler mysslhandler = new SSLSetupHandler() {

 public void initalize(final SSLEngine sslengine) throws SSLException {

 // Enforce TLS and disable SSL

 sslengine.setEnabledProtocols(new String[] {

 "TLSv1",

 "TLSv1.1",

 "TLSv1.2" });

 }

 public void verify(

 final IOSession iosession, final SSLSession sslsession) throws SSLException {

 }

};

SSLNHttpClientConnectionFactory connfactory = new SSLNHttpClientConnectionFactory(

 sslcontext, mysslhandler, ConnectionConfig.DEFAULT);

NHttpClientConnection conn = connfactory.createConnection(iosession);

3.11.2. TLS/SSL aware I/O event dispatches

Default IOEventDispatch implementations shipped with the library such as

DefaultHttpServerIODispatch and DefaultHttpClientIODispatch automatically detect SSL

Asynchronous I/O based on NIO

41

encrypted sessions and handle SSL transport aspects transparently. However, custom I/O event

dispatchers that do not extend AbstractIODispatch are required to take some additional actions to

ensure correct functioning of the transport layer encryption.

• The I/O dispatch may need to call SSLIOSession#initalize() method in order to put the SSL

session either into a client or a server mode, if the SSL session has not been yet initialized.

• When the underlying I/O session is input ready, the I/O dispatcher should check whether the SSL I/

O session is ready to produce input data by calling SSLIOSession#isAppInputReady(), pass control

to the protocol handler if it is, and finally call SSLIOSession#inboundTransport() method in order

to do the necessary SSL handshaking and decrypt input data.

• When the underlying I/O session is output ready, the I/O dispatcher should check whether the SSL I/

O session is ready to accept output data by calling SSLIOSession#isAppOutputReady(), pass control

to the protocol handler if it is, and finally call SSLIOSession#outboundTransport() method in

order to do the necessary SSL handshaking and encrypt application data.

3.12. Embedded non-blocking HTTP server

As of version 4.4 HttpCore ships with an embedded non-blocking HTTP server based on non-blocking

I/O components described above.

HttpAsyncRequestHandler<?> requestHandler = <...>

HttpProcessor httpProcessor = <...>

SocketConfig socketConfig = SocketConfig.custom()

 .setSoTimeout(15000)

 .setTcpNoDelay(true)

 .build();

final HttpServer server = ServerBootstrap.bootstrap()

 .setListenerPort(8080)

 .setHttpProcessor(httpProcessor)

 .setSocketConfig(socketConfig)

 .setExceptionLogger(new StdErrorExceptionLogger())

 .registerHandler("*", requestHandler)

 .create();

server.start();

server.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);

Runtime.getRuntime().addShutdownHook(new Thread() {

 @Override

 public void run() {

 server.shutdown(5, TimeUnit.SECONDS);

 }

});

42

Chapter 4. Advanced topics

4.1. HTTP message parsing and formatting framework

HTTP message processing framework is designed to be expressive and flexible while remaining

memory efficient and fast. HttpCore HTTP message processing code achieves near zero intermediate

garbage and near zero-copy buffering for its parsing and formatting operations. The same HTTP

message parsing and formatting API and implementations are used by both the blocking and non-

blocking transport implementations, which helps ensure a consistent behavior of HTTP services

regardless of the I/O model.

4.1.1. HTTP line parsing and formatting

HttpCore utilizes a number of low level components for all its line parsing and formatting methods.

CharArrayBuffer represents a sequence of characters, usually a single line in an HTTP message stream

such as a request line, a status line or a header. Internally CharArrayBuffer is backed by an array of

chars, which can be expanded to accommodate more input if needed. CharArrayBuffer also provides

a number of utility methods for manipulating content of the buffer, storing more data and retrieving

subsets of data.

CharArrayBuffer buf = new CharArrayBuffer(64);

buf.append("header: data ");

int i = buf.indexOf(':');

String s = buf.substringTrimmed(i + 1, buf.length());

System.out.println(s);

System.out.println(s.length());

stdout >

data

4

ParserCursor represents a context of a parsing operation: the bounds limiting the scope of the parsing

operation and the current position the parsing operation is expected to start at.

CharArrayBuffer buf = new CharArrayBuffer(64);

buf.append("header: data ");

int i = buf.indexOf(':');

ParserCursor cursor = new ParserCursor(0, buf.length());

cursor.updatePos(i + 1);

System.out.println(cursor);

stdout >

[0>7>14]

LineParser is the interface for parsing lines in the head section of an HTTP message. There are

individual methods for parsing a request line, a status line, or a header line. The lines to parse are

passed in-memory, the parser does not depend on any specific I/O mechanism.

Advanced topics

43

CharArrayBuffer buf = new CharArrayBuffer(64);

buf.append("HTTP/1.1 200");

ParserCursor cursor = new ParserCursor(0, buf.length());

LineParser parser = BasicLineParser.INSTANCE;

ProtocolVersion ver = parser.parseProtocolVersion(buf, cursor);

System.out.println(ver);

System.out.println(buf.substringTrimmed(

 cursor.getPos(),

 cursor.getUpperBound()));

stdout >

HTTP/1.1

200

CharArrayBuffer buf = new CharArrayBuffer(64);

buf.append("HTTP/1.1 200 OK");

ParserCursor cursor = new ParserCursor(0, buf.length());

LineParser parser = new BasicLineParser();

StatusLine sl = parser.parseStatusLine(buf, cursor);

System.out.println(sl.getReasonPhrase());

stdout >

OK

LineFormatter for formatting elements of the head section of an HTTP message. This is the

complement to LineParser . There are individual methods for formatting a request line, a status line,

or a header line.

Please note the formatting does not include the trailing line break sequence CR-LF.

CharArrayBuffer buf = new CharArrayBuffer(64);

LineFormatter formatter = new BasicLineFormatter();

formatter.formatRequestLine(buf,

 new BasicRequestLine("GET", "/", HttpVersion.HTTP_1_1));

System.out.println(buf.toString());

formatter.formatHeader(buf,

 new BasicHeader("Content-Type", "text/plain"));

System.out.println(buf.toString());

stdout >

GET / HTTP/1.1

Content-Type: text/plain

HeaderValueParser is the interface for parsing header values into elements.

CharArrayBuffer buf = new CharArrayBuffer(64);

HeaderValueParser parser = new BasicHeaderValueParser();

buf.append("name1=value1; param1=p1, " +

 "name2 = \"value2\", name3 = value3");

ParserCursor cursor = new ParserCursor(0, buf.length());

System.out.println(parser.parseHeaderElement(buf, cursor));

Advanced topics

44

System.out.println(parser.parseHeaderElement(buf, cursor));

System.out.println(parser.parseHeaderElement(buf, cursor));

stdout >

name1=value1; param1=p1

name2=value2

name3=value3

HeaderValueFormatter is the interface for formatting elements of a header value. This is the

complement to HeaderValueParser .

CharArrayBuffer buf = new CharArrayBuffer(64);

HeaderValueFormatter formatter = new BasicHeaderValueFormatter();

HeaderElement[] hes = new HeaderElement[] {

 new BasicHeaderElement("name1", "value1",

 new NameValuePair[] {

 new BasicNameValuePair("param1", "p1")}),

 new BasicHeaderElement("name2", "value2"),

 new BasicHeaderElement("name3", "value3"),

};

formatter.formatElements(buf, hes, true);

System.out.println(buf.toString());

stdout >

name1="value1"; param1="p1", name2="value2", name3="value3"

4.1.2. HTTP message streams and session I/O buffers

HttpCore provides a number of utility classes for the blocking and non-blocking I/O models that

facilitate the processing of HTTP message streams, simplify handling of CR-LF delimited lines in HTTP

messages and manage intermediate data buffering.

HTTP connection implementations usually rely on session input/output buffers for reading and writing

data from and to an HTTP message stream. Session input/output buffer implementations are I/O model

specific and are optimized either for blocking or non-blocking operations.

Blocking HTTP connections use socket bound session buffers to transfer data. Session buffer interfaces

are similar to java.io.InputStream / java.io.OutputStream classes, but they also provide methods

for reading and writing CR-LF delimited lines.

Socket socket1 = <...>

Socket socket2 = <...>

HttpTransportMetricsImpl metrics = new HttpTransportMetricsImpl();

SessionInputBufferImpl inbuffer = new SessionInputBufferImpl(metrics, 8 * 1024);

inbuffer.bind(socket1.getInputStream());

SessionOutputBufferImpl outbuffer = new SessionOutputBufferImpl(metrics, 8 * 1024);

outbuffer.bind(socket2.getOutputStream());

CharArrayBuffer linebuf = new CharArrayBuffer(1024);

inbuffer.readLine(linebuf);

outbuffer.writeLine(linebuf);

Non-blocking HTTP connections use session buffers optimized for reading and writing data from and

to non-blocking NIO channels. NIO session input/output sessions help deal with CR-LF delimited lines

in a non-blocking I/O mode.

Advanced topics

45

ReadableByteChannel channel1 = <...>

WritableByteChannel channel2 = <...>

SessionInputBuffer inbuffer = new SessionInputBufferImpl(8 * 1024);

SessionOutputBuffer outbuffer = new SessionOutputBufferImpl(8 * 1024);

CharArrayBuffer linebuf = new CharArrayBuffer(1024);

boolean endOfStream = false;

int bytesRead = inbuffer.fill(channel1);

if (bytesRead == -1) {

 endOfStream = true;

}

if (inbuffer.readLine(linebuf, endOfStream)) {

 outbuffer.writeLine(linebuf);

}

if (outbuffer.hasData()) {

 outbuffer.flush(channel2);

}

4.1.3. HTTP message parsers and formatters

HttpCore also provides coarse-grained facade type interfaces for parsing and formatting of HTTP

messages. Default implementations of those interfaces build upon the functionality provided

by SessionInputBuffer / SessionOutputBuffer and HttpLineParser / HttpLineFormatter

implementations.

Example of HTTP request parsing / writing for blocking HTTP connections:

SessionInputBuffer inbuffer = <...>

SessionOutputBuffer outbuffer = <...>

HttpMessageParser<HttpRequest> requestParser = new DefaultHttpRequestParser(

 inbuffer);

HttpRequest request = requestParser.parse();

HttpMessageWriter<HttpRequest> requestWriter = new DefaultHttpRequestWriter(

 outbuffer);

requestWriter.write(request);

Example of HTTP response parsing / writing for blocking HTTP connections:

SessionInputBuffer inbuffer = <...>

SessionOutputBuffer outbuffer = <...>

HttpMessageParser<HttpResponse> responseParser = new DefaultHttpResponseParser(

 inbuffer);

HttpResponse response = responseParser.parse();

HttpMessageWriter<HttpResponse> responseWriter = new DefaultHttpResponseWriter(

 outbuffer);

responseWriter.write(response);

Custom message parsers and writers can be plugged into the message processing pipeline through a

custom connection factory:

HttpMessageWriterFactory<HttpResponse> responseWriterFactory =

 new HttpMessageWriterFactory<HttpResponse>() {

 @Override

 public HttpMessageWriter<HttpResponse> create(

 SessionOutputBuffer buffer) {

Advanced topics

46

 HttpMessageWriter<HttpResponse> customWriter = <...>

 return customWriter;

 }

};

HttpMessageParserFactory<HttpRequest> requestParserFactory =

 new HttpMessageParserFactory<HttpRequest>() {

 @Override

 public HttpMessageParser<HttpRequest> create(

 SessionInputBuffer buffer,

 MessageConstraints constraints) {

 HttpMessageParser<HttpRequest> customParser = <...>

 return customParser;

 }

};

HttpConnectionFactory<DefaultBHttpServerConnection> cf =

 new DefaultBHttpServerConnectionFactory(

 ConnectionConfig.DEFAULT,

 requestParserFactory,

 responseWriterFactory);

Socket socket = <...>

DefaultBHttpServerConnection conn = cf.createConnection(socket);

Example of HTTP request parsing / writing for non-blocking HTTP connections:

SessionInputBuffer inbuffer = <...>

SessionOutputBuffer outbuffer = <...>

NHttpMessageParser<HttpRequest> requestParser = new DefaultHttpRequestParser(

 inbuffer);

HttpRequest request = requestParser.parse();

NHttpMessageWriter<HttpRequest> requestWriter = new DefaultHttpRequestWriter(

 outbuffer);

requestWriter.write(request);

Example of HTTP response parsing / writing for non-blocking HTTP connections:

SessionInputBuffer inbuffer = <...>

SessionOutputBuffer outbuffer = <...>

NHttpMessageParser<HttpResponse> responseParser = new DefaultHttpResponseParser(

 inbuffer);

HttpResponse response = responseParser.parse();

NHttpMessageWriter responseWriter = new DefaultHttpResponseWriter(

 outbuffer);

responseWriter.write(response);

Custom non-blocking message parsers and writers can be plugged into the message processing pipeline

through a custom connection factory:

NHttpMessageWriterFactory<HttpResponse> responseWriterFactory =

 new NHttpMessageWriterFactory<HttpResponse>() {

 @Override

 public NHttpMessageWriter<HttpResponse> create(SessionOutputBuffer buffer) {

 NHttpMessageWriter<HttpResponse> customWriter = <...>

 return customWriter;

 }

};

NHttpMessageParserFactory<HttpRequest> requestParserFactory =

 new NHttpMessageParserFactory<HttpRequest>() {

 @Override

 public NHttpMessageParser<HttpRequest> create(

 SessionInputBuffer buffer, MessageConstraints constraints) {

Advanced topics

47

 NHttpMessageParser<HttpRequest> customParser = <...>

 return customParser;

 }

};

NHttpConnectionFactory<DefaultNHttpServerConnection> cf =

 new DefaultNHttpServerConnectionFactory(

 null,

 requestParserFactory,

 responseWriterFactory,

 ConnectionConfig.DEFAULT);

IOSession iosession = <...>

DefaultNHttpServerConnection conn = cf.createConnection(iosession);

4.1.4. HTTP header parsing on demand

The default implementations of HttpMessageParser and NHttpMessageParser interfaces do not parse

HTTP headers immediately. Parsing of header value is deferred until its properties are accessed. Those

headers that are never used by the application will not be parsed at all. The CharArrayBuffer backing

the header can be obtained through an optional FormattedHeader interface.

HttpResponse response = <...>

Header h1 = response.getFirstHeader("Content-Type");

if (h1 instanceof FormattedHeader) {

 CharArrayBuffer buf = ((FormattedHeader) h1).getBuffer();

 System.out.println(buf);

}

	HttpCore Tutorial
	Table of Contents
	Preface
	1. HttpCore Scope
	2. HttpCore Goals
	3. What HttpCore is NOT

	Chapter 1. Fundamentals
	1.1. HTTP messages
	1.1.1. Structure
	1.1.2. Basic operations
	1.1.2.1. HTTP request message
	1.1.2.2. HTTP response message
	1.1.2.3. HTTP message common properties and methods

	1.1.3. HTTP entity
	1.1.3.1. Repeatable entities
	1.1.3.2. Using HTTP entities
	1.1.3.3. Ensuring release of system resources

	1.1.4. Creating entities
	1.1.4.1. BasicHttpEntity
	1.1.4.2. ByteArrayEntity
	1.1.4.3. StringEntity
	1.1.4.4. InputStreamEntity
	1.1.4.5. FileEntity
	1.1.4.6. HttpEntityWrapper
	1.1.4.7. BufferedHttpEntity

	1.2. HTTP protocol processors
	1.2.1. Standard protocol interceptors
	1.2.1.1. RequestContent
	1.2.1.2. ResponseContent
	1.2.1.3. RequestConnControl
	1.2.1.4. ResponseConnControl
	1.2.1.5. RequestDate
	1.2.1.6. ResponseDate
	1.2.1.7. RequestExpectContinue
	1.2.1.8. RequestTargetHost
	1.2.1.9. RequestUserAgent
	1.2.1.10. ResponseServer

	1.2.2. Working with protocol processors

	1.3. HTTP execution context
	1.3.1. Context sharing

	Chapter 2. Blocking I/O model
	2.1. Blocking HTTP connections
	2.1.1. Working with blocking HTTP connections
	2.1.2. Content transfer with blocking I/O
	2.1.3. Supported content transfer mechanisms
	2.1.4. Terminating HTTP connections

	2.2. HTTP exception handling
	2.2.1. Protocol exception

	2.3. Blocking HTTP protocol handlers
	2.3.1. HTTP service
	2.3.1.1. HTTP request handlers
	2.3.1.2. Request handler resolver
	2.3.1.3. Using HTTP service to handle requests

	2.3.2. HTTP request executor
	2.3.3. Connection persistence / re-use

	2.4. Connection pools
	2.5. TLS/SSL support
	2.6. Embedded HTTP server

	Chapter 3. Asynchronous I/O based on NIO
	3.1. Differences from other I/O frameworks
	3.2. I/O reactor
	3.2.1. I/O dispatchers
	3.2.2. I/O reactor shutdown
	3.2.3. I/O sessions
	3.2.4. I/O session state management
	3.2.5. I/O session event mask
	3.2.6. I/O session buffers
	3.2.7. I/O session shutdown
	3.2.8. Listening I/O reactors
	3.2.9. Connecting I/O reactors

	3.3. I/O reactor configuration
	3.3.1. Queuing of I/O interest set operations

	3.4. I/O reactor exception handling
	3.4.1. I/O reactor audit log

	3.5. Non-blocking HTTP connections
	3.5.1. Execution context of non-blocking HTTP connections
	3.5.2. Working with non-blocking HTTP connections
	3.5.3. HTTP I/O control
	3.5.4. Non-blocking content transfer
	3.5.5. Supported non-blocking content transfer mechanisms
	3.5.6. Direct channel I/O

	3.6. HTTP I/O event dispatchers
	3.7. Non-blocking HTTP content producers
	3.7.1. Creating non-blocking entities
	3.7.1.1. NByteArrayEntity
	3.7.1.2. NStringEntity
	3.7.1.3. NFileEntity

	3.8. Non-blocking HTTP protocol handlers
	3.8.1. Asynchronous HTTP service
	3.8.1.1. Non-blocking HTTP request handlers
	3.8.1.2. Asynchronous HTTP exchange
	3.8.1.3. Asynchronous HTTP request consumer
	3.8.1.4. Asynchronous HTTP response producer
	3.8.1.5. Non-blocking request handler resolver

	3.8.2. Asynchronous HTTP request executor
	3.8.2.1. Asynchronous HTTP request producer
	3.8.2.2. Asynchronous HTTP response consumer

	3.9. Non-blocking connection pools
	3.10. Pipelined request execution
	3.11. Non-blocking TLS/SSL
	3.11.1. SSL I/O session
	3.11.1.1. SSL setup handler

	3.11.2. TLS/SSL aware I/O event dispatches

	3.12. Embedded non-blocking HTTP server

	Chapter 4. Advanced topics
	4.1. HTTP message parsing and formatting framework
	4.1.1. HTTP line parsing and formatting
	4.1.2. HTTP message streams and session I/O buffers
	4.1.3. HTTP message parsers and formatters
	4.1.4. HTTP header parsing on demand

