HttpCore Tutorial

Oleg KalnichevskKi

L. HEPCOrE SCOPEeveeeeeieee ettt e e r e e e e e s e s e e e e e e e s s ennr e eeeeeeeenanns iv
2. HEPCOIE GOBISeeiieiiiiiee ettt et e et e s e e e s st e e e enbeeeeeas iv
3. What HIPCOIE IS NOT ...ttt e st e e e e e nnnees iv
L. FUNABMENTAIS ...ttt e e ettt e e sttt e e e e ab bt e e e e bbe e e e e snbb e e e e annaneee s 1
N O o I I 015 1
L0 0, SEUCKIUIE e 1
1.1.2. BASIC OPEELIONSvveeeiiuiieeie ettt e e et ee e e s et e e e e e st e e e s snn e e e s asne e e e e annneeeeaans 1
ORI == 1Y AT 3
1.1.4, Creating @NETIEScooiiueieieieieiee ettt e e annneeas 5

1.2. HTTP ProtOCOI PrOCESSOISueuviriiieeeessieiiiiieeeeeeeeeseettraeeeeaeessssnnsberaeeaaeeessanntareeeaaens 7
1.2.1. Standard protoCol INtErCEPLONS ..uuviiiieeiiiiciiiiee e e e e s ettt e e e e e e e e e e e e e e eaneees 7
1.2.2. Working with protOCOl PrOCESSOIScvvvreriirieeieierieeeeeeeeeeeereeeereeeeeeeeeeeeeeeeeeeeeees 8

1.3. HTTP @XECULION CONEEXTE ...oiieiiiiiiiiiiieee e e e et e e e e e ettt e e e e e e e et e e e e e e e e s ennnaaneeeaeeas 9
1.3.1. CONMEXE SNAMNG +..evteeeeeiiieee ettt e e ettt st e e e e e et e e s s e e e s annne e e e e anbereeeanns 9

2. BIOCKING 170 MOUE ...ttt e e e e e e e e e nnbneeeeans 10
2.1. Blocking HTTP CONNECLIONSuueiiieieiiiiiiieiee e e e et e e e e s st e e e e e e s snrnaeeaea e 10
2.1.1. Working with blocking HTTP connectionscccceeeeeeiiiiiiiieeece e, 10
2.1.2. Content transfer with blocking 1/Ocoovvvviiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 11
2.1.3. Supported content transfer MEChaNISMScvvvveiiiiiie e 11
2.1.4. Terminating HTTP CONNECLIONScceiiiiiiiieeiiiiiee e 12

2.2. HTTP exception NANAIINGccoouveiieiiiiieeii et 12
2.2.1. ProtoCol @XCEPLIONuvviiiiieeeei it eee e e e s e e e e e e e s aaae e e e e e 12

2.3. Blocking HTTP protocol handlersceeeeeiiiiiiiiiiiei e 12
2.3. L HTTP SEIVICE coiiiieiiie ettt ettt ettt et e e et e e e e st e e e e nnae e e e e nnneeeeeann 12
2.3.2. HTTP reqUESE EXECULOLccooieeeeeeeeee e 14
2.3.3. CONNECLION PEISISLENCE / TE-USE ...coeiiiiiieeiiieie ettt e ettt e e 14

2.4, CONNECLION POOIS ...ttt e s e e e 15
2.5, TLS/SSL SUPPOIT ...vveieieeeee ittt e e ettt e e e e e e st e e e e e e e s s st e e e e e e e e e s sennnrbaneeaaens 16
2.6. EMbedded HTTP SEIVENooiiiiiiie ettt e e 17
3. Asynchronous 1/O based ON NTOeeiiiiiiiiiiieieieeeeeee e e e e e e e e e e eeereeereeeeeeereees 18
3.1. Differences from other [/O frameworksoooiiuiiiiiieie e 18
A @ = ox {o EESSOOPRRERR 18
321, 1/O AISPAICNENS ...ttt 18
3.2.2. 1/O reaCtor SNULAOWNcoiiiiieiiiiiie et 19
323, 1/O SESSIONS ...ttt ettt e e e e araee e ans 19
3.2.4. 1/O session state MaNAJEMENTveeiieeeiiiciiiiiee e e e e e e e e e s ee e e e e e e ea 19
3.2.5. 1/O SESSION EVENE MBSK ..oeeeeeiiiiiiiiiiieee e et e e e e s s eeee e e e e e e s e eneeaeeeeeaeeee e 19
3.2.6. 1/O SESSION DUFFEIS ..eeeiieees e 20
3.2.7. 1/O SESSION SNULAOWN ...uveiiiiieeeeiciiiiiiie e e e e e e e e e e e e e senaaaneeeaeeas 20
3.2.8. LiStening 1/0 FBACLOIScoiuiiieeiiiiiee ettt 20
3.2.9. ConNECLiNG [/O FEACKOIScccei ittt e e e e e e e e e e 21

3.3. 1/O reaCtor CONFIQUIBLIONcceeieiiiiiiiieiee e e e e e et e e e e e s s er e e e e e e e e e anenes 22
3.3.1. Queuing of /O interest Set OPEratioNSuurruerrrnrmmnrirnrrrerninrerrnrerre.. 23

3.4. 1/O reactor exception NaNAIiNGcooiiiiiiieiie e 23
3.4.1. 1/O reaCtor AUt 1Ovveieieiiiee e 24

3.5. Non-blocking HTTP CONNECLIONScuvviiiiiiiiiee et 24
3.5.1. Execution context of non-blocking HTTP connectionsccccceeveeeeieccivnnnen. 24
3.5.2. Working with non-blocking HTTP cONnNectionsccccceeeeviiiiiivieeeee e, 24

HttpCore Tutorial

3.5.3. HTTP 1O CONMIOL ..ottt e e e e 25
3.5.4. Non-blocking content transferoocveveeiiiiieeee e 26
3.5.5. Supported non-blocking content transfer mechanismscccooeccviviieeee e 27
3.5.6. Direct channel 1/O ...t 27

3.6. HTTP I/O event diSPatChersceiiiieiiiiiciiiiiec et 28
3.7. Non-blocking HTTP content prodUCErSueeeeeeeeiiiiiiiiieeeee et e e e evvvne e 30
3.7.1. Creating non-blocking entities ..., 30

3.8. Non-blocking HTTP protocol handIersccoouiieiiiiiiiceiiee e 31
3.8.1. AsynchronOUS HTTP SEIVICEccoiuiiiieiiiiiie ettt 31
3.8.2. Asynchronous HTTP reqUuESt EXECULONcoeiiurreeeiiiieeeeeiieee e s ee e s sieeee e 35

3.9. Non-blocking CONNECLION POOIScciiiieiiiieie e e e e e e e e 37
3.10. Pipelined requeSt EXECULIONcuviiiiieee et e et e e e e e e e e e e e aenraeeas 38
G I I I A o o) oo o TR RS P 39
O S S I 1@ === o o RS U PP 39
3.11.2. TLS/SSL aware 1/O event diSpatChesevveiiiiiieeiiiiiee e 40
3.12. Embedded Non-blocking HTTP SEIVENooiiiiiieeiiiiee e 41
AN V= 0ol o [(0] o T o= TSRS 42
4.1. HTTP message parsing and formatting frameworkcccccceeeiiiiiiiieece e, 42
4.1.1. HTTP line parsing and formattingcccccccvvvviiiiieeeeeeeeee e 42
4.1.2. HTTP message streams and session 1/O buffers ..., 44
4.1.3. HTTP message parsers and fOrMatterscoovuveeieniiieeeniiieee e 45
4.1.4. HTTP header parsing on demandcccceeeemiiieieiiniriee e 47

Preface

HttpCore is a set of components implementing the most fundamental aspects of the HTTP protocol
that are nonethel ess sufficient to devel op full-featured client-side and server-side HTTP services with

aminimal footprint.

HttpCore has the following scope and goals:

1. HttpCore Scope
« A consistent API for building client / proxy / server side HTTP services
« A consistent API for building both synchronous and asynchronous HTTP services

e A set of low level components based on blocking (classic) and non-blocking (NIO) I/O models

2. HttpCore Goals
» Implementation of the most fundamental HT TP transport aspects
» Balance between good performance and the clarity & expressiveness of AP
» Small (predictable) memory footprint

» Sdlf-contained library (no external dependencies beyond JRE)

3. What HttpCore is NOT

* A replacement for HttpClient

¢ A replacement for Servlet APIs

Chapter 1. Fundamentals

1.1. HTTP messages

1.1.1. Structure

A HTTP message consists of a header and an optional body. The message header of an HTTP request
consists of arequest line and a collection of header fields. The message header of an HTTP response
consists of astatusline and a collection of header fields. All HTTP messages must include the protocol
version. Some HT TP messages can optionally enclose a content body.

HttpCore defines the HTTP message object model to follow this definition closely, and provides
extensive support for serialization (formatting) and deserialization (parsing) of HTTP message
elements.

1.1.2. Basic operations

1.1.2.1. HTTP request message

HTTP request is a message sent from the client to the server. The first line of that message includes
the method to apply to the resource, the identifier of the resource, and the protocol version in use.

Ht t pRequest request = new Basi cHtt pRequest (" GET", "/",
Htt pVersion. HTTP_1_1);

System out . println(request. get Request Li ne(). get Met hod());
System out. println(request. get RequestLine().getUi());
System out . println(request. get Protocol Version());

System out. println(request. get RequestLine().toString());

stdout >

GET

/

HTTP/ 1.1

GET / HITP/1.1

1.1.2.2. HTTP response message

HTTP response is a message sent by the server back to the client after having received and interpreted
areguest message. Thefirst line of that message consists of the protocol version followed by anumeric
status code and its associated textual phrase.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,
Htt pStatus. SC OK, "OK");

System out. println(response. get Prot ocol Version());

System out . println(response. get St atusLi ne(). get StatusCode());
System out. println(response. get St at usLi ne(). get ReasonPhrase());
System out. println(response. get StatusLine().toString());

stdout >

Fundamentals

HTTP/ 1.1

200

K

HTTP/ 1.1 200 OK

1.1.2.3. HTTP message common properties and methods

An HTTP message can contain a number of headers describing properties of the message such as
the content length, content type, and so on. HttpCore provides methods to retrieve, add, remove, and
enumerate such headers.

Ht t pResponse response = new Basi cHtt pResponse(Htt pVersion. HTTP_1_1,

Htt pSt atus. SC_ K, "OK");
response. addHeader (" Set - Cooki e",

"cl=a; path=/; domain=local host");
response. addHeader (" Set - Cooki e",

"c2=b; path=\"/\", c3=c; domain=\"|ocal host\"");
Header hl = response. get First Header (" Set - Cooki e") ;
System out. println(hl);

Header h2 = response. get Last Header (" Set - Cooki e") ;
System out. println(h2);

Header[] hs = response. get Header s(" Set - Cooki e") ;
System out. println(hs.|ength);

stdout >

Set - Cooki e: cl=a; path=/; donmi n=l ocal host
Set - Cooki e: c¢2=b; path="/", c3=c; donmi n="Iocal host"
2

There is an efficient way to obtain all headers of agiven type using the Header I t er at or interface.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,
Htt pStatus. SC OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; domain=\"local host\"");

Headerlterator it = response. headerlterator("Set-Cookie");

while (it.hasNext()) {
Systemout.println(it.next());

}

stdout >

Set - Cooki e: cl=a; path=/; donmi n=l ocal host
Set - Cooki e: c2=b; path="/", c3=c; domai n="|ocal host"

It also provides convenience methods to parse HT TP messages into individual header elements.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,
Htt pStatus. SC OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

Fundamentals

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; domain=\"|ocal host\"");

Header El enent I terator it = new Basi cHeader El enent |t erat or (
response. header |t erat or (" Set - Cooki e"));

while (it.hasNext()) {
Header El emrent el em = it.nextEl enent();

Systemout.println(elemgetName() + " =" + elemgetValue());
NaneVal uePair[] parans = el em get Paraneters();
for (int i =0; i < paranms.length; i++) {
Systemout.println(" " + parans[i]);
}
}
stdout >
cl =a
pat h=/
domai n=| ocal host
c2 =b
pat h=/
c3 =c
donai n=Il ocal host

HTTP headers are tokenized into individual header elements only on demand. HTTP headersreceived
over an HTTP connection are stored internally as an array of characters and parsed lazily only when
you access their properties.

1.1.3. HTTP entity

HT TP messages can carry acontent entity associated with the request or response. Entities can befound
in some requests and in some responses, as they are optional. Requests that use entities are referred to
as entity-enclosing requests. The HT TP specification defines two entity-enclosing methods. POST and
PUT. Responses are usually expected to enclose a content entity. There are exceptionsto thisrule such
as responses to HEAD method and 204 No Content, 304 Not Modified, 205 Reset Content responses.

HttpCore distinguishes three kinds of entities, depending on where their content originates:

» streamed: The content is received from a stream, or generated on the fly. In particular, this
category includes entities being received from a connection. Streamed entities are generally not
repeatable.

» self-contained: The content isin memory or obtained by means that are independent from a
connection or other entity. Self-contained entities are generally repeatable.

e wrapping: The content is obtained from another entity.
1.1.3.1. Repeatable entities

An entity can be repeatable, meaning its content can be read more than once. Thisisonly possiblewith
self-contained entities (like Byt eArrayEntity OF StringEntity).

1.1.3.2. Using HTTP entities

Since an entity can represent both binary and character content, it has support for character encodings
(to support the latter, i.e. character content).

Fundamentals

Theentity iscreated when executing arequest with enclosed content or when the request was successful
and the response body is used to send the result back to the client.

To read the content from the entity, one can either retrieve the input stream via the
Htt pEnt i t y#get Content () method, which returns an j ava.io. | nput Stream or one can supply
an output stream to the Htt pEnti t y#writ eTo(Qut put St rean) method, which will return once all
content has been written to the given stream. Please note that some non-streaming (self-contained)
entities may be unable to represent their content as a j ava. i o. | nput St r eam efficiently. It is legal
for such entities to implement Htt pEnti ty#writeTo(Qut put Streamy method only and to throw
Unsuppor t edOper at i onException from Htt pEnti t y#get Cont ent () method.

TheEntityuils classexposessevera static methodsto simplify extracting the content or information
from an entity. Instead of reading the j ava. i o. | nput St r eamdirectly, one can retrieve the complete
content body in a string or byte array by using the methods from this class.

When the entity has been received with an incoming message, the methods
Ht t pEnt i t y#get Cont ent Type() and Htt pEnt it y#get Cont ent Lengt h() methods can be used for
reading the common metadata such as Cont ent - Type and Cont ent - Lengt h headers (if they are
available). Since the cont ent - Type header can contain a character encoding for text mime-types
liketext/plainortext/htm,theH tpEntity#get Content Encodi ng() method is used to read this
information. If the headers aren't available, a length of -1 will be returned, and NuLL for the content
type. If the Cont ent - Type header is available, a Header object will be returned.

When creating an entity for a outgoing message, this meta data has to be supplied by the creator of
the entity.

StringEntity nmyEntity = new StringEntity("inportant nmessage",
Consts. UTF_8) ;

System out. println(myEntity. get Content Type());

Systemout. println(nyEntity. get ContentlLength());
Systemout.printin(EntityUtils.toString(nyEntity));
Systemout.println(EntityUils.toByteArray(nyEntity).length);

stdout >

Cont ent - Type: text/plain; charset=UTF-8
17

i mportant nmessage

17

1.1.3.3. Ensuring release of system resources

In order to ensure proper release of system resources one must close the content stream associated
with the entity.

Ht t pResponse response;
HttpEntity entity = response.getEntity();
if (entity !'= null) {
I nput Streaminstream = entity. getContent();

try {
/1 do somret hing useful
} finally {

i nstream cl ose();

}

Fundamentals

When working with streaming entities, one can usethe Enti tyUti | s#consume(Htt pEntity) method
to ensure that the entity content has been fully consumed and the underlying stream has been closed.

1.1.4. Creating entities
There are afew ways to create entities. HttpCore provides the following implementations:
®* BasicHttpEntity
e ByteArrayEntity
e StringEntity
®* |nputStreankEntity
* FileEntity
* EntityTenpl ate
e HttpEntityWapper
e BufferedHttpEntity

1.1.4.1. Basi cHt t pEntity

Exactly asthe nameimplies, this basic entity represents an underlying stream. In general, usethisclass
for entities received from HT TP messages.

This entity has an empty constructor. After construction, it represents no content, and has a negative
content length.

One needs to set the content stream, and optionally the length. This can be done with
the Basi cHt t pEnt i t y#set Cont ent (| nput St rean) and Basi cHt t pEnti t y#set Cont ent Lengt h(| ong)
methods respectively.

Basi cHttpEntity nmyEntity = new BasicHttpEntity();
nyEntity. set Cont ent (sonel nput Streamn ;
nyEntity. set Cont ent Lengt h(340); // sets the length to 340

1.1.4.2. ByteArrayEntity
Byt eArrayEnti ty isaself-contained, repeatable entity that obtainsits content from agiven byte array.

Supply the byte array to the constructor.

Byt eArrayEntity nmyEntity = new ByteArrayEntity(new byte[] {1, 2,3},
Cont ent Type. APPLI CATI ON_OCTET_STREAM) ;

1.1.4.3. StringEntity

StringEntity isaself-contained, repeatable entity that obtains its content from aj ava. | ang. Stri ng
object. It has three constructors, one simply constructs with agiven j ava. | ang. String object; the
second also takes a character encoding for the data in the string; the third allows the mime type to
be specified.

Fundamentals

StringBuilder sb = new StringBuilder();
Map<String, String> env = System getenv();
for (Map. Entry<String, String> envEntry : env.entrySet()) {
sb. append(envEntry. get Key())
.append(": ").append(envEntry. getVal ue())
.append("\r\n");

}

/] construct without a character encoding (defaults to | SO 8859-1)
HtpEntity nyEntityl = new StringEntity(sb.toString());

// alternatively construct with an encoding (mne type defaults to "text/plain")
HtpEntity nyEntity2 = new StringEntity(sb.toString(), Consts.UTF_8);

// alternatively construct with an encoding and a mne type
HtpEntity nyEntity3 = new StringEntity(sb.toString(),
Cont ent Type. create("text/plain", Consts.UTF_8));

1.1.4.4. I nput StreanEntity

I nput St r eanEnt i ty iSastreamed, non-repeatabl e entity that obtainsits content from an input stream.
Construct it by supplying the input stream and the content length. Use the content length to limit the
amount of dataread fromthej ava. i o. I nput St r eam If the length matchesthe content length available
ontheinput stream, then all datawill be sent. Alternatively, anegative content length will read all data
from the input stream, which is the same as supplying the exact content length, so use the length to
[imit the amount of data to read.

| nput St ream i nstream = get Sonel nput Strean() ;
I nput StreanEntity nyEntity = new I nput StreanEntity(instream 16);

1.1.45.FileEntity

Fi | eEntity isasef-contained, repeatable entity that obtainsits content from afile. Use this mostly to
stream largefiles of different types, where you need to supply the content type of thefile, for instance,
sending a zip file would require the content type appl i cati on/ zi p, for XML appl i cation/ xm .

HttpEntity entity = new FileEntity(staticFile,
Cont ent Type. creat e("appl i cation/java-archive"));

1.1.4.6. Ht t pEnt i t yW apper

Thisisthe base classfor creating wrapped entities. The wrapping entity holds areference to awrapped
entity and delegates all callsto it. Implementations of wrapping entities can derive from this class and
need to override only those methods that should not be delegated to the wrapped entity.

1.1.4.7. BufferedH t pEntity

Buf feredHt t pEnti ty isasubclassof Htt pEntityw apper. Construct it by supplying another entity.
It reads the content from the supplied entity, and buffersit in memory.

Thismakes it possible to make a repeatable entity, from a non-repeatable entity. If the supplied entity
is already repeatable, it simply passes calls through to the underlying entity.

nyNonRepeat abl eEnti ty. set Cont ent (sonel nput Strean) ;
Buf feredHt t pEntity nyBufferedEntity = new BufferedHttpEntity(

Fundamentals

nyNonRepeat abl eEntity);

1.2. HTTP protocol processors

HTTP protocol interceptor isaroutine that implements a specific aspect of the HTTP protocol. Usually
protocol interceptors are expected to act upon one specific header or a group of related headers of the
incoming message or populate the outgoing message with one specific header or a group of related
headers. Protocol interceptors can al so mani pul ate content entities enclosed with messages; transparent
content compression / decompression being agood example. Usually thisisaccomplished by using the
'‘Decorator’ pattern where awrapper entity classis used to decorate the original entity. Several protocol
interceptors can be combined to form one logical unit.

HTTP protocol processor is a collection of protocol interceptors that implements the 'Chain of
Responsibility' pattern, where each individual protocol interceptor isexpected to work on the particular
aspect of the HTTP protocol it isresponsible for.

Usually the order in which interceptors are executed should not matter aslong asthey do not depend on
aparticular state of the execution context. If protocol interceptors haveinterdependenciesand therefore
must be executed in a particular order, they should be added to the protocol processor in the same
sequence as their expected execution order.

Protocol interceptors must be implemented as thread-safe. Similarly to servlets, protocol interceptors
should not use instance variables unless access to those variablesis synchronized.

1.2.1. Standard protocol interceptors

HttpCore comes with a number of most essential protocol interceptors for client and server HTTP
processing.

1.2.1.1. Request Cont ent

Request Cont ent isthemost important interceptor for outgoing requests. It isresponsiblefor delimiting
content length by adding the Cont ent - Lengt h Or Tr ansf er - Cont ent headers based on the properties
of the enclosed entity and the protocol version. This interceptor is required for correct functioning of
client side protocol processors.

1.2.1.2. ResponseCont ent

ResponseCont ent IS the most important interceptor for outgoing responses. It is responsible for
delimiting content length by adding Cont ent - Lengt h oOr Transf er - Cont ent headers based on the
properties of the enclosed entity and the protocol version. This interceptor is required for correct
functioning of server side protocol processors.

1.2.1.3. Request ConnCont r ol

Request ConnCont r ol isresponsiblefor adding the connect i on header to the outgoing requests, which
is essential for managing persistence of HTTP/ 1. 0 connections. This interceptor is recommended for
client side protocol processors.

1.2.1.4. ResponseConnCont r ol

ResponseConnCont r ol IS responsible for adding the Connecti on header to the outgoing responses,
which isessential for managing persistence of HTTP/ 1. 0 connections. Thisinterceptor isrecommended
for server side protocol processors.

Fundamentals

1.2.1.5. Request Dat e

Request Dat e iS responsible for adding the bat e header to the outgoing requests. This interceptor is
optional for client side protocol processors.

1.2.1.6. ResponseDat e

ResponseDat e iSresponsible for adding the bat e header to the outgoing responses. Thisinterceptor is
recommended for server side protocol processors.

1.2.1.7. Request Expect Cont i nue

Request Expect Cont i nue is responsible for enabling the 'expect-continue’ handshake by adding the
Expect header. Thisinterceptor isrecommended for client side protocol processors.

1.2.1.8. Request Tar get Host

Request Tar get Host IS responsible for adding the Host header. This interceptor is required for client
side protocol processors.

1.2.1.9. Request User Agent

Request User Agent isresponsiblefor adding the User - Agent header. Thisinterceptor isrecommended
for client side protocol processors.

1.2.1.10. ResponseSer ver

ResponseSer ver is responsible for adding the server header. This interceptor is recommended for
server side protocol processors.

1.2.2. Working with protocol processors

Usually HTTP protocol processors are used to pre-process incoming messages prior to executing
application specific processing logic and to post-process outgoing messages.

Ht t pProcessor httpproc = HttpProcessorBuil der.create()
/1 Required protocol interceptors
. add(new Request Content ())
. add(new Request Tar get Host ())
/'l Recommended protocol interceptors
. add(new Request ConnControl ())
. add(new Request User Agent (" MyAgent - HTTP/ 1. 1"))
// Optional protocol interceptors
. add(new Request Expect Cont i nue(true))
Lbui I d();

Ht t pCor eCont ext context = HttpCoreContext.create();
Ht t pRequest request = new Basi cHtt pRequest (" CGET", "/");
htt pproc. process(request, context);

Send the request to the target host and get a response.

Ht t pResponse = <...>
ht t pproc. process(response, context);

Please note the Basi cHt t pProcessor class does not synchronize access to itsinternal structures and
therefore may not be thread-safe.

Fundamentals

1.3. HTTP execution context

Originally HTTP has been designed as a statel ess, response-request oriented protocol. However, real
world applications often need to be able to persist state information through several logically related
reguest-response exchanges. In order to enable applications to maintain a processing state HttpCpre
allows HTTP messages to be executed within a particular execution context, referred to as HTTP
context. Multiple logically related messages can participate in alogical session if the same context is
reused between consecutive requests. HT TP context functions similarly to aj ava. uti | . Map<Stri ng,

vj ect >. It issimply a collection of logically related named values.

Please nore Ht t pCont ext can contain arbitrary objects and therefore may be unsafe to share between
multiple threads. Care must be taken to ensure that Ht t pCont ext instances can be accessed by one
thread at atime.

1.3.1. Context sharing

Protocol interceptors can collaborate by sharing information - such as a processing stete - through an
HTTP execution context. HTTP context is a structure that can be used to map an attribute name to
an attribute value. Internally HTTP context implementations are usually backed by a Hashmvap. The
primary purpose of the HTTP context is to facilitate information sharing among various logically
related components. HTTP context can be used to store a processing state for one message or several
consecutive messages. Multiple logically related messages can participate in alogical session if the
same context is reused between consecutive messages.

Ht t pProcessor httpproc = HttpProcessorBuil der.create()
.add(new Htt pRequest I nterceptor() {
public void process(
Ht t pRequest request,
Ht t pCont ext context) throws HttpException, | OException {
String id = (String) context.getAttribute("session-id");
if (id!=null) {
request . addHeader (" Sessi on-1D", id);
}
}

3]
bui 1d();

Ht t pCor eCont ext context = HttpCoreContext.create();
Ht t pRequest request = new Basi cHtt pRequest (" GET", "/");
htt pproc. process(request, context);

Chapter 2. Blocking I/O model

Blocking (or classic) 1/0O in Java represents a highly efficient and convenient 1/0 model well suited
for high performance applications where the number of concurrent connectionsisrelatively moderate.
Modern JVMs are capable of efficient context switching and the blocking 1/0 model should offer the
best performance in terms of raw data throughput as long as the number of concurrent connections
is below one thousand and connections are mostly busy transmitting data. However for applications
where connections stay idlemost of thetimethe overhead of context switching may become substantial
and a non-blocking 1/0 model may present a better alternative.

2.1. Blocking HTTP connections

HTTP connections are responsible for HTTP message serialization and deserialization. One should
rarely need to use HTTP connection objects directly. There are higher level protocol components
intended for execution and processing of HTTP requests. However, in some cases direct interaction
with HTTP connections may be necessary, for instance, to access properties such as the connection
status, the socket timeout or the local and remote addresses.

It is important to bear in mind that HTTP connections are not thread-safe. We strongly recommend
limiting al interactions with HTTP connection objects to one thread. The only method of
Ht t pConnect i on interface and its sub-interfaces which is safe to invoke from another thread is
Ht t pConnect i on#shut down() .

2.1.1. Working with blocking HTTP connections

HttpCore does not provide full support for opening connections because the process of establishing
anew connection - especialy on the client side - can be very complex when it involves one or more
authenticating or/and tunneling proxies. Instead, blocking HTTP connections can be bound to any
arbitrary network socket.

Socket socket = <...>

Def aul t BHt t pdl i ent Connecti on conn = new Defaul t BHt t pCl i ent Connection(8 * 1024);
conn. bi nd(socket);

System out. println(conn.isQOpen());

Ht t pConnecti onMetrics metrics = conn.getMetrics();

Systemout. println(nmetrics. get Request Count ());

System out. println(nmetrics. get ResponseCount());

System out. println(metrics. get Recei vedByt esCount ());

Systemout. println(nmetrics. get Sent Byt esCount ());

HTTP connection interfaces, both client and server, send and receive messages in two stages. The
message head is transmitted first. Depending on properties of the message head, a message body may
follow it. Please note it is very important to always close the underlying content stream in order to
signal that the processing of the message is complete. HTTP entities that stream out their content
directly from theinput stream of the underlying connection must ensure they fully consume the content
of the message body for that connection to be potentially re-usable.

Over-simplified process of request execution on the client side may look like this:

Socket socket = <...>

10

Blocking 1/0 model

Def aul t BHt t pdl i ent Connecti on conn = new Defaul t BHtt pCl i ent Connection(8 * 1024);

conn. bi nd(socket);

Ht t pRequest request = new Basi cHtt pRequest (" GET", "/");

conn. sendRequest Header (request) ;

Ht t pResponse response = conn. recei veResponseHeader () ;

conn. recei veResponseEnti ty(response);

HtpEntity entity = response.getEntity();

if (entity !'=null) {
/! Do sonething useful with the entity and, when done, ensure all
/'l content has been consuned, so that the underlying connection
// can be re-used
EntityUtils.consune(entity);

Over-simplified process of request handling on the server side may look like this:

Socket socket = <...>

Def aul t BHt t pSer ver Connecti on conn = new Def aul t BH t pSer ver Connection(8 * 1024);
conn. bi nd(socket);
Ht t pRequest request = conn.recei veRequest Header () ;
i f (request instanceof HttpEntityEnclosingRequest) {
conn. recei veRequest Entity((Ht t pEntityEncl osi ngRequest) request);
HtpEntity entity = ((H tpEntityEncl osi ngRequest) request)
.getEntity();
if (entity !'=null) {
// Do sonething useful with the entity and, when done, ensure all
/'l content has been consunmed, so that the underlying connection
/1 could be re-used
EntityUtils.consune(entity);
}
}
Ht t pResponse response = new Basi cHtt pResponse(Htt pVersion. HTTP_1_1,
200, "OK")
response. setEntity(new StringEntity("Got it"));
conn. sendResponseHeader (r esponse) ;
conn. sendResponseEnt i ty(response);

Please note that one should rarely need to transmit messages using these low level methods and should
normally use the appropriate higher level HTTP service implementations instead.

2.1.2. Content transfer with blocking 1/O

HTTP connections manage the process of the content transfer using the Htt pEntity
interface. HTTP connections generate an entity object that encapsulates the content stream
of the incoming message. Please note that Hit pServer Connecti on#r ecei veRequest Entity()
and Httpdient Connecti on#recei veResponseEntity() do not retrieve or buffer any incoming
data. They merely inject an appropriate content codec based on the properties of the incoming
message. The content can be retrieved by reading from the content input stream of the
enclosed entity using Ht t pEnt i t y#get Cont ent () . The incoming data will be decoded automatically
and completely transparently to the data consumer. Likewise, HTTP connections rely on
Htt pEnti t y#wr it eTo(Qut put St rean) method to generate the content of an outgoing message. If an
outgoing message encloses an entity, the content will be encoded automatically based on the properties
of the message.

2.1.3. Supported content transfer mechanisms

Default implementations of HT TP connections support three content transfer mechanisms defined by
the HTTP/1.1 specification:

11

Blocking 1/0 model

e Content-Length delimited: The end of the content entity is determined by the value of the
Cont ent - Lengt h header. Maximum entity length: Long#MAX_VALUE.

e ldentity coding: Theend of the content entity isdemarcated by closing the underlying connection
(end of stream condition). For obvious reasons the identity encoding can only be used on the server
side. Maximum entity length: unlimited.

* Chunk coding: Thecontent is sent in small chunks. Maximum entity length: unlimited.

Theappropriate content stream classwill be created automatically depending on properties of the entity
enclosed with the message.

2.1.4. Terminating HTTP connections

HTTP connections can be terminated either gracefully by calling Htt pConnecti on#cl ose() Of
forcibly by calling H: t pConnect i on#shut down() . The former triesto flush al buffered data prior to
terminating the connection and may block indefinitely. The H: t pConnect i on#cl ose() method isnot
thread-safe. The latter terminates the connection without flushing internal buffers and returns control
to the caller as soon as possible without blocking for long. The Ht t pConnect i on#shut down() method
is thread-safe.

2.2. HTTP exception handling

All HttpCore components potentially throw two types of exceptions. | Cexcepti on in case of an I/
O failure such as socket timeout or an socket reset and Ht t pExcept i on that signals an HTTP failure
such asaviolation of the HTTP protocol. Usually /O errors are considered non-fatal and recoverable,
whereas HTTP protocol errors are considered fatal and cannot be automatically recovered from.

2.2.1. Protocol exception

Pr ot ocol Excepti on signals a fatal HTTP protocol violation that usually results in an immediate
termination of the HTTP message processing.

2.3. Blocking HTTP protocol handlers

2.3.1. HTTP service

Ht t pSer vi ce isaserver side HTTP protocol handler based on the blocking I/O model that implements
the essential requirements of the HTTP protocal for the server side message processing as described
by RFC 2616.

Htt pServi ce relies on Hit pProcessor instance to generate mandatory protocol headers for all
outgoing messages and apply common, cross-cutting message transformations to all incoming and
outgoing messages, whereas HTTP request handlers are expected to take care of application specific
content generation and processing.

Ht t pProcessor httpproc = HttpProcessorBuil der. create()
. add(new ResponseDate())
. add(new ResponseServer ("M/Server-HITP/1.1"))
. add(new ResponseContent ())
. add(new ResponseConnControl ())

12

Blocking 1/0 model

Lbuild();
Htt pServi ce httpService = new HttpService(httpproc, null);

2.3.1.1. HTTP request handlers

The H: t pRequest Handl er interface represents a routine for processing of a specific group of HTTP
requests. Ht t pSer vi ce isdesigned to take care of protocol specific aspects, whereasindividual request
handlers are expected to take care of application specific HTTP processing. The main purpose of a
request handler is to generate a response object with a content entity to be sent back to the client in
response to the given request.

Ht t pRequest Handl er nyRequest Handl er = new Htt pRequest Handl er () {

public void handl e(

Ht t pRequest request,

Ht t pResponse response,

Ht t pCont ext context) throws HttpException, | OException {
response. set St at usCode(Ht t pSt at us. SC_CK) ;
response. set Entity(

new StringEntity("some inportant nmessage",
Cont ent Type. TEXT_PLAIN)) ;

2.3.1.2. Request handler resolver

HTTP request handlers are usualy managed by a Ht t pRequest Handl er Resol ver that matches a
request URI to a request handler. HttpCore includes a very simple implementation of the request
handler resolver based on a trivial pattern matching algorithm: Ht t pRequest Handl er Regi stry
supports only three formats. *, <uri >* and *<uri >.

Htt pProcessor httpproc = <...>

Ht t pRequest Handl er nyRequest Handl er 1
Ht t pRequest Handl er nyRequest Handl er 2
Ht t pRequest Handl er nyRequest Handl er 3

I
AN A
%

Uri Ht t pRequest Handl er Mapper handl er Mapper = new Uri Htt pRequest Handl er Mapper () ;
handl er Mapper . regi ster("/service/*", nyRequestHandl er1);

handl er Mapper . regi ster("*.do", nyRequestHandl er2);

handl er Mapper.regi ster("*", myRequest Handl er 3);

Htt pService httpService = new HttpService(httpproc, handl er Mapper);

Users ae encouraged to provide more sophisticated implementations of
Ht t pRequest Handl er Resol ver - for instance, based on regular expressions.

2.3.1.3. Using HTTP service to handle requests

When fully initialized and configured, the Ht t pSer vi ce can be used to execute and handle requests
for active HTTP connections. TheHt t pSer vi ce#handl eRequest () method reads anincoming request,
generates a response and sends it back to the client. This method can be executed in a loop to
handle multiple requests on a persistent connection. The Ht t pSer vi ce#handl eRequest () method is
safe to execute from multiple threads. This allows processing of requests on several connections

simultaneously, aslong as al the protocol interceptors and requests handlers used by the Ht t pSer vi ce
are thread-safe.

13

Blocking 1/0 model

Htt pServi ce httpService = <
Ht t pSer ver Connecti on conn = <...>
Ht t pCont ext context = <...>

bool ean active = true;
try {
while (active & conn.isOpen()) {
htt pServi ce. handl eRequest (conn, context);
}
} finally {
conn. shut down() ;

}

2.3.2. HTTP request executor

Ht t pRequest Execut or isaclient side HTTP protocol handler based on the blocking 1/0 model that
implements the essential requirements of the HTTP protocol for the client side message processing,
as described by RFC 2616. The H: t pRequest Execut or relies on the Htt pProcessor instance to
generate mandatory protocol headers for all outgoing messages and apply common, cross-cutting
message transformations to all incoming and outgoing messages. Application specific processing can
be implemented outside Ht t pRequest Execut or once the request has been executed and aresponse has
been received.

Htt pl i ent Connection conn = <...>

Ht t pProcessor httpproc = HttpProcessorBuil der.create()
. add(new Request Content ())
. add(new Request Tar get Host ())
. add(new Request ConnControl ())
.add(new Request User Agent ("MyClient/1.1"))
. add(new Request Expect Conti nue(true))
Lbuild();
Ht t pRequest Execut or htt pexecutor = new HttpRequest Executor();

Ht t pRequest request = new Basi cHtt pRequest (" GET", "/");

Ht t pCor eCont ext context = HttpCoreContext.create();

ht t pexecut or . preProcess(request, httpproc, context);

Ht t pResponse response = httpexecutor. execute(request, conn, context);
ht t pexecut or. post Process(response, httpproc, context);

HtpEntity entity = response.getEntity();
EntityUtils.consune(entity);

Methods of H: t pRequest Execut or are safe to execute from multiple threads. This allows execution
of regquests on several connections simultaneously, aslong as al the protocol interceptors used by the
Ht t pRequest Execut or are thread-safe.

2.3.3. Connection persistence / re-use

The Connect i onReuseSt r at egy interfaceis intended to determine whether the underlying connection
can be re-used for processing of further messages after the transmission of the current message has
been completed. The default connection re-use strategy attempts to keep connections alive whenever
possible. Firstly, it examinesthe version of the HT TP protocol used to transmit the message. HTTP/ 1. 1
connections are persistent by default, while HTTP/ 1. 0 connections are not. Secondly, it examines
the value of the Connect i on header. The peer can indicate whether it intends to re-use the connection
on the opposite side by sending Keep- Al i ve Or O ose values in the Connecti on header. Thirdly, the

14

Blocking 1/0 model

strategy makes the decision whether the connection is safe to re-use based on the properties of the
enclosed entity, if available.

2.4. Connection pools

Efficient client-side HTTP transports often requires effective re-use of persistent connections.
HttpCore facilitates the process of connection re-use by providing support for managing pools of
persistent HTTP connections. Connection pool implementations are thread-safe and can be used
concurrently by multiple consumers.

By default the pool alows only 20 concurrent connections in total and two concurrent connections
per a unique route. The two connection limit is due to the requirements of the HTTP specification.
However, in practical terms this can often be too restrictive. One can change the pool configuration at
runtime to allow for more concurrent connections depending on a particular application context.

Htt pHost target = new HttpHost ("l ocal host");

Basi cConnPool connpool = new Basi cConnPool ();

connpool . set MaxTot al (200) ;

connpool . set Def aul t MaxPer Rout e(10) ;

connpool . set MaxPer Rout e(t arget, 20);

Fut ur e<Basi cPool Entry> future = connpool .| ease(target, null);
Basi cPool Entry pool Entry = future.get();

Htt pd i ent Connecti on conn = pool Entry. get Connecti on();

Please note that the connection pool has no way of knowing whether or not aleased connection is still
being used. It isthe responsibility of the connection pool user to ensure that the connection is released
back to the pool onceit is not longer needed, even if the connection is not reusable.

Basi cConnPool connpool = <...>
Fut ur e<Basi cPool Entry> future = connpool .| ease(target, null);
Basi cPool Entry pool Entry = future.get();

try {
Ht t pd i ent Connecti on conn = pool Entry. get Connecti on();
} finally {

connpool . rel ease(pool Entry, true);

}

The state of the connection pool can be interrogated at runtime.

Htt pHost target = new HttpHost ("l ocal host");

Basi cConnPool connpool = <...>

Pool Stats total Stats = connpool . get Total Stats();
Systemout.println("total available: " + total Stats. getAvailable());
Systemout.printin("total leased: " + total Stats.getlLeased());
Systemout.println("total pending: " + total Stats. getPending());

Pool Stats target Stats = connpool . get St ats(target);
Systemout.println("target available: " + targetStats.getAvailable());
Systemout.println("target |eased: " + targetStats.getlLeased());
Systemout.println("target pending: " + targetStats. getPending());

Please note that connection pools do not pro-actively evict expired connections. Even though expired
connection cannot be leased to the requester, the pool may accumulate stale connections over time
especially after a period of inactivity. It is generally advisable to force eviction of expired and idle
connections from the pool after an extensive period of inactivity.

15

Blocking 1/0 model

Basi cConnPool connpool = <...>
connpool . cl oseExpi red();
connpool . cl osel dl e(1, TinmeUnit.M NUTES);

Generadly it is considered to be a responsibility of the consumer to keep track of connections
leased from the pool and to ensure their immediate release as soon as they are no longer needed
or actively used. Nevertheless Basi cConnPool provides protected methods to enumerate available
idle connections and those currently leased from the pool. This enables the pool consumer to query

connection state and selectively terminate connections meeting a particular criterion.

static class MyBasi cConnPool extends Basi cConnPool {

@verride

protected void enumAvai | abl e(final Pool EntryCal | back<HttpHost, HttpC ientConnection> callback) {

super . enunAvai | abl e(cal | back) ;

}

@verride

protected void enunLeased(final Pool EntryCal | back<Htt pHost, HttpC ientConnection> call

super . enunlLeased(cal | back);

}

back) {

MyBasi cConnPool connpool = new MyBasi cConnPool ();
connpool . enumAvai | abl e(new Pool EntryCal | back<Ht t pHost, HttpC ient Connection>() {

@verride
public void process(final Pool Entry<HttpHost, H tpC ientConnection> entry) {

Date creationTime = new Date(entry. getCreated());
if (creationTine.before(soneTine)) {
entry.close();

}

B)s

2.5. TLS/SSL support

Blocking connections can be bound to any arbitrary socket. This makes SSL support quite straight-
forward. Any SSLSocket instance can be bound to ablocking connection in order to make all messages

transmitted over than connection secured by TLS/SSL.

SSLCont ext ssl context = SSLCont exts. createSystenDefaul t();
Socket Factory sf = ssl context.get Socket Factory();
SSLSocket socket = (SSLSocket) sf.createSocket("sonehost", 443);
/1 Enforce TLS and di sable SSL
socket . set Enabl edProt ocol s(new String[] {

"TLSv1",

"TLSv1. 1",

"TLSv1. 2" });
/'l Enforce strong ciphers
socket . set Enabl edCi pher Sui tes(new String[] {

"TLS_RSA W TH_AES_256_CBC_SHA",

"TLS DHE RSA W TH _AES 256_CBC_SHA",

"TLS_DHE_DSS W TH_AES 256_CBC _SHA" });
Def aul t BHt t pdl i ent Connecti on conn = new Defaul t BH t pCl i ent Connection(8 * 1204);
conn. bi nd(socket);

16

Blocking 1/0 model

2.6. Embedded HTTP server

As of version 4.4 HttpCore ships with an embedded HTTP server based on blocking I/0O components
described above.

Ht t pRequest Handl er request Handler = <...>
Ht t pProcessor httpProcessor = <...>
Socket Confi g socket Config = Socket Confi g. custon()
. set SoTi meout (15000)
. set TcpNoDel ay(true)
Lbuild();
final HttpServer server = ServerBootstrap. bootstrap()
. set Li st ener Port (8080)
.set Htt pProcessor (htt pProcessor)
. set Socket Confi g(socket Confi g)
. set Except i onLogger (new St dErr or Excepti onLogger ())
.registerHandl er("*", requestHandl er)
.create();
server.start();
server. awai t Term nati on(Long. MAX_VALUE, Ti meUnit. DAYS);

Runt i ne. get Runt i ne() . addShut downHook(new Thread() {
@verride
public void run() {
server. shut down(5, Ti neUnit.SECONDS) ;
}
1)

17

Chapter 3. Asynchronous I/O based on
NIO

Asynchronous I/O model may be more appropriate for those scenarios where raw data throughput is
less important than the ability to handle thousands of simultaneous connectionsin a scalable, resource
efficient manner. Asynchronous|/Oisarguably more complex and usually requiresaspecial carewhen

dealing with large message payloads.

3.1. Differences from other I/O frameworks

Solves similar problems as other frameworks, but has certain distinct features:

« minimalistic, optimized for data volume intensive protocols such asHTTP.

« efficient memory management: data consumer can read isonly as much input data asit can process

without having to allocate more memory.

« direct access to the NIO channels where possible.

3.2. 1/0O reactor

HttpCore NIO is based on the Reactor pattern as described by Doug Lea. The purpose of 1/0 reactors
is to react to 1/0O events and to dispatch event notifications to individua /O sessions. The main
idea of 1/O reactor pattern is to break away from the one thread per connection model imposed
by the classic blocking I/0O model. The | OReact or interface represents an abstract object which
implements the Reactor pattern. Internally, | OReact or implementations encapsulate functionality of

the NIOj ava. ni 0. channel s. Sel ect or .

I/O reactors usually employ a small number of dispatch threads (often as few as one) to dispatch I/0
event notifications to a much greater number (often as many as several thousands) of /O sessions or

connections. It is generally recommended to have one dispatch thread per CPU core.

| OReact or Confi g config = | OReact or Confi g. DEFAULT,;
| OReact or ioreactor = new Defaul t Connecti ngl OReact or (confi g);

3.2.1. /O dispatchers

| OReact or implementations make use of the | OEvent Di spat ch interface to notify clients of events
pending for a particular session. All methods of the | CEvent Di spat ch are executed on a dispatch
thread of the 1/O reactor. Therefore, it isimportant that processing that takes place in the event methods
will not block the dispatch thread for too long, asthe I/O reactor will be unableto react to other events.

| OReact or ioreactor = new Defaul t Connecti ngl OReactor ();

| CEvent Di spat ch event Di spatch = <...>
i oreact or . execut e(event Di spat ch);

Generic 1/0 events as defined by the | CEvent bi spat ch interface:

18

Asynchronous 1/0 based on NIO

e connected: Triggered when anew session has been created.
e inputReady: Triggered when the session has pending inpuit.

* output Ready: Triggered when the session is ready for output.
* tineout: Triggered when the session has timed ouit.

* disconnected: Triggered when the session has been terminated.

3.2.2. 1/0 reactor shutdown

The shutdown of 1/0 reactors is a complex process and may usually take a while to complete. 1/0
reactorswill attempt to gracefully terminate all active I/O sessions and dispatch threads approximately
within the specified grace period. If any of the 1/O sessions failsto terminate correctly, the 1/O reactor
will forcibly shut down remaining sessions.

| OReactor ioreactor = <...>
| ong gracePeriod = 3000L; // mlliseconds
i or eact or. shut down(gracePeri od);

The | OReact or #shut down(| ong) method is safeto call from any thread.

3.2.3. 1/0 sessions

The | Osessi on interface represents a sequence of logicaly related data exchanges between two
end points. | CSessi on encapsulates functionality of NIO j ava. ni 0. channel s. Sel ecti onKey and
j ava. ni 0. channel s. Socket Channel . The channel associated with the | Gsessi on can be used to read
data from and write data to the session.

| OSession iosession = <...>

Readabl eByt eChannel ch = (Readabl eByt eChannel) i osession.channel ();
Byt eBuf fer dst = ByteBuffer.allocate(2048);

ch.read(dst);

3.2.4.1/0 session state management

|/O sessions are not bound to an execution thread, therefore one cannot use the context of the thread
to store a session's state. All details about a particular session must be stored within the session itself.

| OSession iosession = <...>
bj ect soneState = <...>
i osession.setAttribute("state", soneState);

| OSessi on i osessi on

=<...>
Obj ect currentState = iosession.getAttribute("state");

Please note that if several sessions make use of shared objects, access to those objects must be made
thread-safe.

3.2.5. 1/0 session event mask

One can declare an interest in a particular type of 1/0 events for a particular 1/0 session by setting
its event mask.

19

Asynchronous 1/0 based on NIO

| OSession iosession = <...>
i osessi on. set Event Mask(Sel ecti onKey. OP_READ | Sel ecti onKey. OP_WRI TE) ;

One can also toggle oP_ReAD and oP_WRI TE flags individually.

| OSessi on iosession = <...>
i osessi on. set Event (Sel ecti onKey. OP_READ) ;
i osessi on. cl ear Event (Sel ect i onKey. OP_READ) ;

Event notifications will not take place if the corresponding interest flag is not set.

3.2.6. 1/0 session buffers

Quite often 1/O sessions need to maintain internal 1/0 buffersin order to transform input / output data
prior to returning it to the consumer or writing it to the underlying channel. Memory management in
HttpCore NI1O is based on the fundamental principle that the dataa consumer can read, isonly as much
input data as it can process without having to allocate more memory. That means, quite often some
input data may remain unread in one of the internal or external session buffers. The /O reactor can
query the status of these session buffers, and make sure the consumer gets notified correctly as more
data gets stored in one of the session buffers, thus allowing the consumer to read the remaining data
once it is able to process it. 1/0 sessions can be made aware of the status of external session buffers
using the Sessi onBuf f er St at us interface.

| OSession iosession = <...>

Sessi onBuf fer Status nyBufferStatus = <...>
i osessi on. set Buf f er St at us(nyBuf f er St at us) ;
i osessi on. hasBuf f eredl nput () ;

i osessi on. hasBuf f er edQut put () ;

3.2.7. 1/0 session shutdown

One can close an /O session gracefully by calling | Osessi on#cl ose() alowing the session to be
closed in an orderly manner or by calling | OSessi on#shut down() to forcibly close the underlying
channel. The distinction between two methodsis of primary importance for those types of 1/0 sessions
that involve some sort of a session termination handshake such as SSL/TL S connections.

3.2.8. Listening I/O reactors

Li st eni ngl OReact or represents an |1/O reactor capable of listening for incoming connections on one
or severa ports.

Li st eni ngl OReactor ioreactor = <...>

Li st ener Endpoi nt epl = ioreactor.|isten(new | netSocket Address(8081));
Li st ener Endpoi nt ep2 = ioreactor.|isten(new | net Socket Addr ess(8082));
Li st ener Endpoi nt ep3 = ioreactor.|isten(new | net Socket Address(8083));

// Vit until all endpoints are up
epl. waitFor();
ep2. wait For ();
ep3. wai t For ();

Once an endpoint is fully initialized it starts accepting incoming connections and propagates 1/0
activity notificationsto the | CEvent Di spat ch instance.

20

Asynchronous 1/0 based on NIO

One can obtain a set of registered endpoints at runtime, query the status of an endpoint at runtime,
and closeit if desired.

Li st eni ngl CReactor ioreactor = <...>

Set <Li st ener Endpoi nt > eps = i oreactor. get Endpoi nts();
for (ListenerEndpoint ep: eps) {
[/ Still active?

System out . println(ep.get Address());
if (ep.isCosed()) {
/1 If not, has it term nated due to an exception?
if (ep.getException() !'= null) {
ep. get Exception(). printStackTrace();
}
} else {
ep. cl ose();

}

3.2.9. Connecting I/O reactors

Connect i ngl OReact or representsan |/O reactor capabl e of establishing connectionswith remote hosts.

Connecti ngl OReactor ioreactor = <...>
Sessi onRequest sessi onRequest = i oreactor. connect (
new | net Socket Addr ess("ww. googl e. cont', 80),

null, null, null);

Opening a connection to a remote host usually tends to be a time consuming process and may take a
while to complete. One can monitor and control the process of session initialization by means of the
Sessi onRequest interface.

/1 Make sure the request times out if connection
/'l has not been established after 1 sec
sessi onRequest . set Connect Ti neout (1000) ;
/1 Wit for the request to conplete
sessi onRequest . wai t For () ;
// Has request term nated due to an exception?
i f (sessionRequest.getException() != null) {
sessi onRequest . get Exception(). printStackTrace();
}
/'l Get hold of the new |/ O session
| OSessi on i osessi on = sessi onRequest . get Sessi on();

Sessi onRequest implementations are expected to be thread-safe. Session request can be aborted at
any time by calling | cSessi on#cancel () from another thread of execution.

i f (!sessionRequest.isConpleted()) {
sessi onRequest . cancel () ;

}

One can pass several optional parametersto the Connect i ngl OReact or #connect () method to exert
agreater control over the process of session initialization.

A non-null local socket address parameter can be used to bind the socket to a specific local address.

21

Asynchronous 1/0 based on NIO

I
A
v

Connect i ngl OReact or ioreactor =

Sessi onRequest sessi onRequest = ioreactor. connect (
new | net Socket Addr ess("ww. googl e. cont', 80),
new | net Socket Address("192. 168. 0. 10", 1234),
null, null);

One can provide an attachment object, which will be added to the new session's context upon
initialization. This object can be used to pass an initial processing state to the protocol handler.

Sessi onRequest sessi onRequest = i oreactor. connect (
new | net Socket Addr ess("ww. googl e. cont', 80),
nul |, new HttpHost ("ww. google.ru"), null);

| OSessi on i osessi on = sessi onRequest . get Sessi on();
Ht t pHost virtual Host = (HttpHost) iosession.getAttribute(
| OSessi on. ATTACHVENT_KEY) ;

It is often desirable to be able to react to the completion of a session request asynchronously
without having to wait for it, blocking the current thread of execution. One can optionally provide
an implementation Sessi onRequest Cal | back interface to get notified of events related to session
reguests, such as request completion, cancellation, failure or timeout.

Connecti ngl OReactor ioreactor = <...>
Sessi onRequest sessi onRequest = i oreactor. connect (
new | net Socket Addr ess("ww. googl e. cont', 80), null, null,

new Sessi onRequest Cal | back() {

public void cancel | ed(Sessi onRequest request) {

}

public void conpl et ed(Sessi onRequest request) {
System out. println("new connection to " +
request . get Renot eAddr ess());
}

public void fail ed(SessionRequest request) {
i f (request.getException() != null) {
request . get Exception(). print St ackTrace();
}
}

public void tinmeout (SessionRequest request) {

}

s

3.3. /O reactor configuration

I/O reactors by default use system dependent configuration which in most cases should be sensible
enough.

| OReact or Confi g config = | OReact or Confi g. DEFAULT;
| OReact or ioreactor = new DefaultListeningl OReactor (config);

However in some cases custom settings may be necessary, for instance, in order to ater default socket
properties and timeout values. One should rarely need to change other parameters.

22

Asynchronous 1/0 based on NIO

| OReact or Config config = | OReact or Confi g. cust om()
. set TcpNoDel ay(true)
. set SoTi meout (5000)
. set SoReuseAddr ess(true)
. set Connect Ti meout (5000)
Lbuild();
| OReact or ioreactor = new Defaul tListeningl OReact or (config);

3.3.1. Queuing of I/O interest set operations

Several older JRE implementations (primarily from IBM) include what Java APl documentation refers
to as a naive implementation of the j ava. ni o. channel s. Sel ecti onKey class. The problem with
j ava. ni 0. channel s. Sel ect i onKey in such JREs isthat reading or writing of the I/O interest set may
block indefinitely if the I/O selector isin the process of executing a select operation. HttpCore NI O can
be configured to operate in aspecial mode wherein 1/0O interest set operations are queued and executed
by on the dispatch thread only when the 1/O selector is not engaged in a select operation.

| OReact or Confi g config = | OReact or Confi g. cust om()
.set | nterest OpQueued(true)
Lbuild();

3.4. 1/0 reactor exception handling

Protocol specific exceptions as well as those I/0O exceptions thrown in the course of interaction with
the session's channel are to be expected and are to be dealt with by specific protocol handlers. These
exceptionsmay result in termination of anindividual session but should not affect the /O reactor and all
other active sessions. There are situations, however, when the 1/0 reactor itself encounters an internal
problem such as an 1/0 exception in the underlying NIO classes or an unhandled runtime exception.
Those types of exceptions are usually fatal and will cause the /O reactor to shut down automatically.

There is a possibility to override this behavior and prevent 1/O reactors from shutting down
automatically in case of a runtime exception or an 1/O exception in internal classes. This can be
accomplished by providing a custom implementation of the | OReact or Except i onHandl er interface.

Def aul t Connecti ngl OReactor ioreactor = <...>
i oreact or. set Except i onHandl er (new | OReact or Except i onHandl er () {

publ i ¢ bool ean handl e(| OException ex) {
i f (ex instanceof BindException) {
/! bind failures considered OK to ignore
return true;

}

return fal se;

}

publ i c bool ean handl e(Runti meExcepti on ex) {
if (ex instanceof UnsupportedQperati onException) {
/1 Unsupported operations considered OK to ignore
return true;

}

return fal se;

1)

23

Asynchronous 1/0 based on NIO

One needs to be very careful about discarding exceptions indiscriminately. It is often much better to
let the 1/O reactor shut down itself cleanly and restart it rather than leaving it in an inconsistent or
unstable state.

3.4.1. 1/O reactor audit log

If an I/O reactor is unable to automatically recover from an 1/O or aruntime exception it will enter the
shutdown mode. First off, it will close all active listeners and cancel all pending new session requests.
Then it will attempt to close al active 1/0 sessions gracefully giving them some time to flush pending
output data and terminate cleanly. Lastly, it will forcibly shut down those I/O sessionsthat till remain
active after the grace period. Thisisafairly complex process, where many things can fail at the same
time and many different exceptions can be thrown in the course of the shutdown process. The 1/0
reactor will record all exceptions thrown during the shutdown process, including the original one that
actually caused the shutdown in the first place, in an audit log. One can examine the audit log and
decide whether it is safe to restart the I/O reactor.

Def aul t Connecti ngl OReactor ioreactor = <...>

// Gve it 5 sec grace period
i or eact or. shut down(5000) ;

Li st <Excepti onEvent > events = ioreactor.get AuditLog();
for (ExceptionEvent event: events) {
Systemerr.printIn("Tine: " + event.getTinestanp());

event . get Cause(). print StackTrace();

3.5. Non-blocking HTTP connections

Effectively non-blocking HTTP connections are wrappers around | 0Sessi on with HTTP specific
functionality. Non-blocking HTTP connections are stateful and not thread-safe. Input / output
operations on non-blocking HT TP connections should be restricted to the dispatch eventstriggered by
the I/O event dispatch thread.

3.5.1. Execution context of non-blocking HTTP connections

Non-blocking HTTP connections are not bound to a particular thread of execution and therefore
they need to maintain their own execution context. Each non-blocking HTTP connection has an
Ht t pCont ext instance associated with it, which can be used to maintain a processing state. The
Ht t pCont ext instance is thread-safe and can be manipulated from multiple threads.

Def aul t NHt t pdl i ent Connecti on conn = <...>
oj ect nyStatehject = <...>

Ht t pCont ext cont ext = conn. get Cont ext () ;
context.setAttribute("state", nyStateObject);

3.5.2. Working with non-blocking HTTP connections

At any point of time one can obtain the request and response objects currently being transferred over
the non-blocking HTTP connection. Any of these objects, or both, can be null if thereis ho incoming
or outgoing message currently being transferred.

NHt t pConnection conn = <...>

24

Asynchronous 1/0 based on NIO

Ht t pRequest request = conn. get Htt pRequest () ;
if (request !'= null) {
Systemout.println("Transferring request: " +
request . get Request Li ne());
}
Ht t pResponse response = conn. get Ht t pResponse();
if (response != null) {
Systemout.println("Transferring response: " +
response. get St at usLi ne());

However, please note that the current request and the current response may not necessarily represent
the same message exchange! Non-blocking HT TP connections can operate in afull duplex mode. One
can process incoming and outgoing messages completely independently from one another. This makes
non-blocking HTTP connections fully pipelining capable, but at same time impliesthat thisisthe job
of the protocol handler to match logically related request and the response messages.

Over-simplified process of submitting arequest on the client side may look like this:

NHt t pd i ent Connection conn = <...>

/1 Obtain execution context

Ht t pCont ext context = conn. get Context ();

// Obtain processing state

Obj ect state = context.getAttribute("state");

/] Generate a request based on the state infornmation
Ht t pRequest request = new Basi cHtt pRequest (" GET", "/");

conn. subm t Request (request);
System out . println(conn.isRequestSubmtted());

Over-simplified process of submitting a response on the server side may look like this:

NHt t pSer ver Connection conn = <...>

// Obtain execution context

Ht t pCont ext context = conn. get Cont ext();

// Obtain processing state

hj ect state = context.getAttribute("state");

/'l Generate a response based on the state information

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1_1,
Htt pStatus. SC_ OK, "OK");

Basi cHttpEntity entity = new BasicH tpEntity();

entity. set Content Type("text/plain");

entity. set Chunked(true);

response. setEntity(entity);

conn. submi t Response(response) ;
System out. println(conn.isResponseSubm tted());

Please note that one should rarely need to transmit messages using these low level methods and should
use appropriate higher level HTTP service implementations instead.

3.5.3. HTTP I/O control

All non-blocking HTTP connections classes implement | 0Control interface, which represents
a subset of connection functionality for controlling interest in 1/O even notifications. | oCont r ol

instances are expected to be fully thread-safe. Therefore | 0Cont rol can be used to request / suspend
I/O event notifications from any thread.

25

Asynchronous 1/0 based on NIO

One must take specia precautions when interacting with non-blocking connections. Ht t pRequest and
Ht t pResponse are not thread-safe. It is generally advisable that all input / output operations on a non-
blocking connection are executed from the 1/0O event dispatch thread.

The following pattern is recommended:
e Usel ccontrol interface to pass control over connection's 1/0O events to another thread / session.

« If input / output operations need be executed on that particular connection, store all the required
information (state) in the connection context and request the appropriate |/O operation by calling
| OCont r ol #r equest | nput () Or | OContr ol #r equest Cut put () Mmethod.

« Execute the required operations from the event method on the dispatch thread using information
stored in connection context.

Please note all operations that take place in the event methods should not block for too long, because
while the dispatch thread remains blocked in one session, it is unable to process events for all other
sessions. /O operations with the underlying channel of the session are not a problem as they are
guaranteed to be non-blocking.

3.5.4. Non-blocking content transfer

The process of content transfer for non-blocking connections works completely differently compared
tothat of blocking connections, as non-blocking connections need to accommodate to the asynchronous
nature of the NIO model. The main distinction between two types of connections is inability to use
the usual, but inherently blocking j ava.io. I nput Streamand j ava.io. Qut put Stream classes to
represent streams of inbound and outbound content. HttpCore NIO provides Cont ent Encoder and
Cont ent Decoder interfaces to handle the process of asynchronous content transfer. Non-blocking
HTTP connections will instantiate the appropriate implementation of a content codec based on
properties of the entity enclosed with the message.

Non-blocking HTTP connections will fire input events until the content entity is fully transferred.

Cont ent Decoder decoder = <...>
// Read data in
Byt eBuf fer dst = ByteBuffer.allocate(2048);
decoder . read(dst);
/| Decode will be marked as conpl ete when
// the content entity is fully transferred
i f (decoder.isConpleted()) {

/'l Done

}

Non-blocking HTTP connections will fire output events until the content entity is marked as fully
transferred.

Cont ent Encoder encoder = <...>

/'l Prepare output data

Byt eBuf fer src = ByteBuffer.all ocate(2048);

I/l Wite data out

encoder.wite(src);

/1 Mark content entity as fully transferred when done
encoder . conpl ete();

26

Asynchronous 1/0 based on NIO

Please note, one still has to provide an HttpEntity instance when submitting an entity enclosing
message to the non-blocking HTTP connection. Properties of that entity will be used to initialize an
Cont ent Encoder instance to be used for transferring entity content. Non-blocking HT TP connections,
however, ignore inherently blocking Htt pEntity#get Content () and HttpEntity#witeTo()
methods of the enclosed entities.

NHt t pSer ver Connection conn = <...>

Ht t pResponse response = new Basi cHtt pResponse(Htt pVersion. HTTP_1_1,
Htt pSt atus. SC_ K, "OK");

Basi cHtt pEntity entity = new BasicH tpEntity();

entity. set Content Type("text/plain");

entity. set Chunked(true);

entity.setContent (null);

response. set Entity(entity);

conn. subm t Response(response) ;

Likewise, incoming entity enclosing messagewill haveanHt t pEnti ty instance associated with them,
but an attempt to call Htt pEnti t y#get Content () OF Htt pEntity#writeTo() methodswill cause an
java.lang. |11 egal Stat eException. The H t pEnti ty instance can be used to determine properties
of the incoming entity such as content length.

NHt t pdl i ent Connection conn = <...>

Ht t pResponse response = conn. get Ht t pResponse();

HttpEntity entity = response.getEntity();

if (entity !'=null) {
Systemout. println(entity. getContentType());
Systemout.println(entity. getContentlLength());
System out. println(entity.isChunked());

3.5.5. Supported non-blocking content transfer mechanisms

Default implementations of the non-blocking HTTP connection interfaces support three content
transfer mechanisms defined by the HTTP/1.1 specification:

* Content-Length delimited: The end of the content entity is determined by the value of the
Cont ent - Lengt h header. Maximum entity length: Long#MAX_VALUE.

e ldentitycoding: Theend of the content entity isdemarcated by closing the underlying connection
(end of stream condition). For obvious reasons the identity encoding can only be used on the server
side. Max entity length: unlimited.

* Chunk coding: The content is sent in small chunks. Max entity length: unlimited.

The appropriate content codec will be created automatically depending on properties of the entity
enclosed with the message.

3.5.6. Direct channel 1/O

Content codes are optimized to read data directly from or write data directly to the underlying 1/0
session's channel, whenever possible avoiding intermediate buffering in a session buffer. Moreover,

27

Asynchronous 1/0 based on NIO

those codecs that do not perform any content transformation (Cont ent - Lengt h delimited and identity
codecs, for example) can leverage NIO j ava. ni o. Fi | eChannel methods for significantly improved
performance of file transfer operations both inbound and outbound.

If the actual content decoder implements Fi | eCont ent Decoder Ohe can make use of its methods to
read incoming content directly to afile bypassing an intermediatej ava. ni 0. Byt eBuf f er .

Cont ent Decoder decoder = <...>
I/ Prepare file channel
Fi | eChannel dst;
/I Make use of direct file I/Oif possible
i f (decoder instanceof FileContentDecoder) ({
| ong Bytesread = ((FileContentDecoder) decoder)
.transfer(dst, 0, 2048);
/1 Decode will be marked as conpl ete when
/1 the content entity is fully transmtted
if (decoder.isConpleted()) {
/1 Done

}

If the actual content encoder implements Fi | eCont ent Encoder Ohe can make use of its methods to
write outgoing content directly from afile bypassing an intermediate j ava. ni o. Byt eBuf f er.

Cont ent Encoder encoder = <...>
/'l Prepare file channel
Fi | eChannel src;
/1 Make use of direct file I/Oif possible
i f (encoder instanceof Fil eContentEncoder) ({
/!l Wite data out
Il ong bytesWitten = ((FileContent Encoder) encoder)
.transfer(src, 0, 2048);
/1 Mark content entity as fully transferred when done
encoder. conpl ete();

3.6. HTTP I/O event dispatchers

HTTP I/O event dispatchers serve to convert generic I/O events triggered by an 1/0 reactor to HTTP
protocol specific events. They rely on NHt t pdl i ent Event Handl er and NHt t pSer ver Event Handl er
interfaces to propagate HT TP protocol eventsto aHTTP protocol handler.

Server side HTTP /O events as defined by the NH: t pSer ver Event Handl er interface:
* connected: Triggered when anew incoming connection has been created.

e request Received: Triggered when anew HTTP request isreceived. The connection passed asa
parameter to this method is guaranteed to return avalid HTTP request object. If the request received
encloses areguest entity this method will be followed a series of i nput Ready eventsto transfer the
request content.

* i nput Ready: Triggered when the underlying channel is ready for reading a new portion
of the request entity through the corresponding content decoder. If the content consumer is
unable to process the incoming content, input event notifications can temporarily suspended
using | control interface (super interface of NHtt pServer Connection). Please note that the

28

Asynchronous 1/0 based on NIO

NHt t pSer ver Connect i on and Cont ent Decoder objects are not thread-safe and should only be used
within the context of thismethod call. The 1 oCont r ol object can be shared and used on other thread
to resume input event notifications when the handler is capable of processing more content.

* responseReady: Triggered when the connection is ready to accept new HTTP response. The
protocol handler does not have to submit aresponseif it is not ready.

* out put Ready: Triggered when the underlying channel is ready for writing a next portion
of the response entity through the corresponding content encoder. If the content producer is
unable to generate the outgoing content, output event notifications can be temporarily suspended
using | ccontrol interface (super interface of NHtt pServer Connection). Please note that the
NH: t pSer ver Connect i on and Cont ent Encoder objects are not thread-safe and should only be used
within the context of thismethod call. The | ocont r ol object can be shared and used on other thread
to resume output event notifications when more content is made available.

* exception: Triggered when an 1/O error occurrs while reading from or writing to the underlying
channel or when an HTTP protocol violation occurs while receiving an HTTP request.

e tinmeout: Triggered when no input is detected on this connection over the maximum period of
inactivity.

e closed: Triggered when the connection has been closed.
Client sde HTTP I/O events as defined by the NHt t pdl i ent Event Handl er interface:

e connected: Triggered when anew outgoing connection has been created. The attachment object
passed as a parameter to this event is an arbitrary object that was attached to the session request.

* request Ready: Triggered when the connection is ready to accept new HTTP request. The
protocol handler does not have to submit arequest if it is not ready.

e out put Ready: Triggered when the underlying channel is ready for writing a next portion
of the request entity through the corresponding content encoder. If the content producer is
unable to generate the outgoing content, output event notifications can be temporarily suspended
using | control interface (super interface of NHtt pd i ent Connection). Please note that the
NH: t pdl i ent Connect i on and Cont ent Encoder objects are not thread-safe and should only be used
within the context of thismethod call. The | ocont rol object can be shared and used on other thread
to resume output event notifications when more content is made available.

e responseReceived: Triggered when an HTTP response is received. The connection passed as
a parameter to this method is guaranteed to return a valid HTTP response object. If the response
received encloses a response entity this method will be followed a series of i nput Ready events to
transfer the response content.

* input Ready: Triggered when the underlying channel is ready for reading a new portion
of the response entity through the corresponding content decoder. If the content consumer is
unable to process the incoming content, input event notifications can be temporarily suspended
using 1 CControl interface (super interface of NHttpd i ent Connection). Please note that the
NHt t pdl i ent Connect i on and Cont ent Decoder 0bjects are not thread-safe and should only be used
within the context of thismethod call. The 1 acont r ol object can be shared and used on other thread
to resume input event notifications when the handler is capable of processing more content.

29

Asynchronous 1/0 based on NIO

e exception: Triggered when an I/O error occurs while reading from or writing to the underlying
channel or when an HTTP protocol violation occurs while receiving an HTTP response.

e tinmeout: Triggered when no input is detected on this connection over the maximum period of
inactivity.

* closed: Triggered when the connection has been closed.

3.7. Non-blocking HTTP content producers

Asdiscussed previously the process of content transfer for non-blocking connectionsworkscompletely
differently compared to that for blocking connections. For obvious reasons classic I/O abstraction
based on inherently blocking java.io. InputStream and java.io. Qut put St ream classes is not
well suited for asynchronous data transfer. In order to avoid inefficient and potentially blocking I/
O operation redirection through j ava. ni o. channel s. Channl es#newChannel non-blocking HTTP
entities are expected to implement NIO specific extension interface Ht t pAsyncCont ent Pr oducer .

The Ht t pAsyncCont ent Producer interface defines several additional method for efficient streaming
of content to a non-blocking HTTP connection:

e produceCont ent : Invoked to write out a chunk of content to the Content Encoder
The 1 0Control interface can be used to suspend output events if the entity is temporarily
unable to produce more content. When all content is finished, the producer MUST call
Cont ent Encoder #conpl et e() . Failure to do so may cause the entity to be incorrectly delimited.
Please note that the Cont ent Encoder object is not thread-safe and should only be used within the
context of this method call. The | 0Cont r ol object can be shared and used on other thread resume
output event notifications when more content is made available.

* i sRepeatable: Determineswhether or not thisproducer is capable of producing its content more
than once. Repeatable content producers are expected to be able to recreate their content even after
having been closed.

e close: Closesthe producer and releases all resources currently allocated by it.

3.7.1. Creating non-blocking entities

Several HTTP entity implementationsincluded in HttpCore NI O support H: t pAsyncCont ent Pr oducer
interface:

* NByteArrayEntity

® NStringEntity

* NFileEntity
3.7.1.1. NByteArrayEntity

Thisis a ssimple self-contained repeatable entity, which receives its content from a given byte array.
This byte array is supplied to the constructor.

NByt eArrayEntity entity = new NByteArrayEntity(new byte[] {1, 2, 3});

30

Asynchronous 1/0 based on NIO

3.7.1.2. NStringEntity

This is a simple, self-contained, repeatable entity that retrieves its data from a j ava. | ang. Stri ng
object. It has 2 constructors, one simply constructs with a given string where the other also takes a
character encoding for the datain thej ava. | ang. Stri ng.

NStringEntity myEntity = new NStringEntity("inportant nmessage",
Consts. UTF_8) ;

3.7.1.3. NFil eEntity

Thisentity readsits content body from afile. Thisclassis mostly used to stream large files of different
types, so one needs to supply the content type of the file to make sure the content can be correctly
recognized and processed by the recipient.

File staticFile = new File("/path/to/ nyapp.jar");
NFil eEntity entity = new NFileEntity(staticFile,
Cont ent Type. create("application/java-archive", null));

The NHtt pEnti ty will make use of the direct channel 1/0 whenever possible, provided the content
encoder is capable of transferring data directly from afile to the socket of the underlying connection.

3.8. Non-blocking HTTP protocol handlers

3.8.1. Asynchronous HTTP service

Ht t pAsyncServi ce is a fully asynchronous HTTP server side protocol handler based on the non-
blocking (NIO) I/O model. Htt pAsyncServi ce translates individual events fired through the
NHt t pSer ver Event Handl er interface into logically related HT TP message exchanges.

Upon receiving an incoming request the Ht t pAsyncSer vi ce Vverifies the message for compliance
with the server expectations using Ht t pAsyncExpect ationVerifier, if provided, and
then Htt pAsyncRequest Handl er Resol ver is used to resolve the request URI to a particular
Ht t pAsyncRequest Handl er intended to handle the request with the given URI. The protocol handler
usestheselected Ht t pAsyncRequest Handl er instanceto processtheincoming request and to generate
an outgoing response.

Ht t pAsyncSer vi ce relieson Ht t pProcessor to generate mandatory protocol headersfor all outgoing
messages and apply common, cross-cutting message transformations to al incoming and outgoing
messages, whereas individual HTTP regquest handlers are expected to implement application specific
content generation and processing.

Ht t pProcessor httpproc = HttpProcessorBuil der.create()
. add(new ResponseDate())
. add(new ResponseServer ("M/Server-HTTP/ 1. 1"))
.add(new ResponseContent ())
. add(new ResponseConnControl ())
Lbuild();
Ht t pAsyncServi ce protocol Handl er = new Htt pAsyncServi ce(httpproc, null);
| OEvent Di spat ch i oEvent Di spatch = new Defaul t Ht t pServer | ODi spat ch(
pr ot ocol Handl er,
new Def aul t NHt t pSer ver Connect i onFact or y(Connect i onConfi g. DEFAULT)) ;

31

Asynchronous 1/0 based on NIO

Li st eni ngl OReact or ioreactor = new DefaultListeningl OReactor();
i oreact or. execut e(i oEvent Di spatch);

3.8.1.1. Non-blocking HTTP request handlers

Ht t pAsyncRequest Handl er represents a routine for asynchronous processing of a specific group of
non-blocking HTTP requests. Protocol handlers are designed to take care of protocol specific aspects,
whereasindividual request handlers are expected to take care of application specific HT TP processing.
The main purpose of arequest handler isto generate a response object with a content entity to be sent
back to the client in response to the given request.

Ht t pAsyncRequest Handl er <Ht t pRequest > rh = new Htt pAsyncRequest Handl er <Ht t pRequest >() {

publ i c H t pAsyncRequest Consuner <Ht t pRequest > processRequest (
final HttpRequest request,
final HttpContext context) ({
/1 Buffer request content in menory for sinplicity
return new Basi cAsyncRequest Consuner () ;

}

public void handl e(
final HttpRequest request,
final HttpAsyncExchange httpexchange,
final HttpContext context) throws HttpException, | OException {
Ht t pResponse response = httpexchange. get Response();
response. set St at usCode(Ht t pSt at us. SC_OK) ;
NFil eEntity body = new NFileEntity(new File("static.htm"),
Cont ent Type.create("text/htm ", Consts.UTF_8));
response. set Enti ty(body);
ht t pexchange. submi t Response(new Basi cAsyncResponsePr oducer (response));

I8

Request handlers must be implemented in athread-safe manner. Similarly to servlets, request handlers
should not use instance variables unless access to those variables are synchronized.

3.8.1.2. Asynchronous HTTP exchange

The most fundamental difference of the non-blocking request handlers compared to their blocking
counterparts is ability to defer transmission of the HTTP response back to the client without
blocking the 1/0 thread by delegating the process of handling the HTTP request to a worker
thread or another service. The instance of Ht tpAsyncExchange passed as a parameter to the
Ht t pAsyncRequest Handl er #handl e method to submit a response as at a later point once response
content becomes available.

The Ht t pAsyncExchange interface can be interacted with using the following methods:

* getRequest: Returnsthereceived HTTP request message.

e getResponse: Returnsthe default HTTP response message that can submitted once ready.
* subnitResponse: Submitsan HTTP response and completed the message exchange.

e isConpleted: Determineswhether or not the message exchange has been compl eted.

e setCall back: SetscCancel | abl e callback to be invoked in case the underlying connection times
out or gets terminated prematurely by the client. This callback can be used to cancel along running
response generating process if aresponse is no longer needed.

32

Asynchronous 1/0 based on NIO

e setTineout: Setstimeout for this message exchange.

e getTineout: Returnstimeout for this message exchange.

Ht t pAsyncRequest Handl er <Ht t pRequest > rh = new Htt pAsyncRequest Handl er <Ht t pRequest >() {

publ i c H t pAsyncRequest Consuner <Ht t pRequest > processRequest (
final HttpRequest request,
final HtpContext context) {
/1 Buffer request content in menory for sinplicity
return new Basi cAsyncRequest Consuner () ;

}

public void handl e(
final HttpRequest request,
final HttpAsyncExchange httpexchange,
final HttpContext context) throws HttpException, | OException {

new Thread() {

@verride
public void run() {
try {
Thread. sl eep(10);
}
catch(l nterrupt edException ie) {}
Ht t pResponse response = httpexchange. get Response();
response. set St at usCode(Ht t pSt at us. SC_OK) ;
NFil eEntity body = new NFileEntity(new File("static.htm"),
Cont ent Type. create("text/htm ", Consts.UTF_8));
response. set Enti ty(body);
ht t pexchange. subm t Response(new Basi cAsyncResponsePr oducer (response));

}
}.start();

b

Please note Ht t pResponse instances are not thread-safe and may not be modified concurrently. Non-
blocking request handlers must ensure HTTP response cannot be accessed by more than one thread
at atime.

3.8.1.3. Asynchronous HTTP request consumer

Ht t pAsyncRequest Consuner facilitates the process of asynchronous processing of HTTP requests. It
is a callback interface used by Ht t pAsyncRequest Handl er S to process an incoming HTTP request
message and to stream its content from a non-blocking server side HT TP connection.

HTTP /O events and methods as defined by the Ht t pAsyncRequest Consuner interface:
* request Recei ved: Invoked when aHTTP request messageis received.

e consuneCont ent : Invoked to process a chunk of content from the Cont ent Decoder. The
| 0Control interface can be used to suspend input events if the consumer is temporarily unable
to consume more content. The consumer can use the Cont ent Decoder #i sConpl eted() method
to find out whether or not the message content has been fully consumed. Please note that the
Cont ent Decoder Object isnot thread-safe and should only be used within the context of this method
cal. Thel ocont r ol 0Object can be shared and used on other thread to resume input event notifications

33

Asynchronous 1/0 based on NIO

when the consumer is capabl e of processing more content. Thisevent isinvoked only if theincoming
request message has a content entity enclosed in it.

* request Conpl eted: Invoked to signal that the request has been fully processed.
* failed: Invoked tosignal that the request processing terminated abnormally.

* get Excepti on: Returns an exception in case of an abnormal termination. This method returns
nul | if the request execution is still ongoing or if it completed successfully.

e getResult: Returnsaresult of the request execution, when available. This method returns nul |
if the request execution is still ongoing.

» isbone: Determines whether or not the request execution completed. If the request processing
terminated normally get Result () can be used to obtain the result. If the request processing
terminated abnormally get Excepti on() can be used to obtain the cause.

e close: Closesthe consumer and releases all resources currently allocated by it.
Ht t pAsyncRequest Consumer implementations are expected to be thread-safe.

Basi cAsyncRequest Consuner iS a very basic implementation of the Htt pAsyncRequest Consumer
interface shipped with the library. Please note that this consumer buffers request content in memory
and therefore should be used for relatively small request messages.

3.8.1.4. Asynchronous HTTP response producer

Ht t pAsyncResponsePr oducer facilitates the process of asynchronous generation of HT TP responses.
It isacallback interface used by Ht t pAsyncRequest Handl er Sto generate an HT TP response message
and to stream its content to a non-blocking server side HT TP connection.

HTTP /O events and methods as defined by the Ht t pAsyncResponsePr oducer interface:
e generateResponse: Invoked to generate a HTTP response message header.

* produceContent: Invoked to write out a chunk of content to the Content Encoder. The
| QCont r ol interface can be used to suspend output events if the producer is temporarily
unable to produce more content. When all content is finished, the producer MUST call
Cont ent Encoder #conpl et e() . Failure to do so may cause the entity to be incorrectly delimited.
Please note that the Cont ent Encoder object is not thread-safe and should only be used within the
context of this method call. The | 0cont r ol object can be shared and used on other thread resume
output event notifications when more content is made available. Thisevent isinvoked only for if the
outgoing response message has a content entity enclosed init, that is Ht t pResponse#get Enti ty()
returnsnul | .

e responseConpl eted: Invoked to signal that the response has been fully written out.
» failed: Invokedto signal that the response processing terminated abnormally.

e close: Closesthe producer and releases all resources currently allocated by it.

Ht t pAsyncResponsePr oducer implementations are expected to be thread-safe.

Basi cAsyncResponseProducer iS a basic implementation of the Htt pAsyncResponseProducer
interface shipped with the library. The producer can make use of the Htt pAsyncCont ent Pr oducer

34

Asynchronous 1/0 based on NIO

interface to efficiently stream out message content to a non-blocking HTTP connection, if it is
implemented by the Ht t pEnt i t y enclosed in the response.

3.8.1.5. Non-blocking request handler resolver

The management of non-blocking HTTP request handlers is quite similar to that of blocking HTTP
request handlers. Usually an instance of Ht t pAsyncRequest Handl er Resol ver iS used to maintain a
registry of request handlers and to matches a request URI to a particular request handler. HttpCore
includes only a very smple implementation of the request handler resolver based on atrivia pattern
matching algorithm: H: t pAsyncRequest Handl er Regi st ry supportsonly threeformats: *, <uri >* and

*<uri >,

Ht t pAsyncRequest Handl er <?> nyRequest Handlerl = <...>
Ht t pAsyncRequest Handl er <?> nyRequest Handl er2 = <...>
Ht t pAsyncRequest Handl er <?> nmyRequest Handl er3 = <...>

Uri Ht t pAsyncRequest Handl er Mapper handl er Reqi stry =
new Uri Ht t pAsyncRequest Handl er Mapper () ;
handl er Reqi stry. regi ster("/service/*", nyRequestHandl er1l);
handl er Reqi stry. regi ster("*.do", nyRequestHandl er2);
handl er Reqgi stry. register("*", myRequestHandl er3);

Users ae encouraged to provide more sophisticated implementations of
Ht t pAsyncRequest Handl er Resol ver, for instance, based on regular expressions.

3.8.2. Asynchronous HTTP request executor

Ht t pAsyncRequest Execut or IS a fully asynchronous client side HTTP protocol handler based on
the NIO (non-blocking) I/O model. Htt pAsyncRequest Execut or tranglates individual events fired
through the NHt t pd i ent Event Handl er interface into logically related HT TP message exchanges.

Ht t pAsyncRequest Execut or relies on Ht t pAsyncRequest Execut i onHandl er to implement
application specific content generation and processing and to handle logicaly related
series of HTTP request / response exchanges, which may aso span across multiple
connections. Htt pProcessor provided by the Htt pAsyncRequest Executi onHandl er instance
will be used to generate mandatory protocol headers for all outgoing messages and apply
common, cross-cutting message transformations to all incoming and outgoing messages. The
caler is expected to pass an instance of HttpAsyncRequest ExecutionHandl er to be used
for the next series of HTTP message exchanges through the connection context using
Ht t pAsyncRequest Execut or #HTTP_HANDLER attribute. HTTP exchange sequence is considered
complete whenthe Ht t pAsyncRequest Execut i onHandl er #i sDone() method returnstr ue.

Ht t pAsyncRequest Execut or ph = new Ht t pAsyncRequest Execut or () ;
| CEvent Di spat ch i oEvent Di spatch = new Defaul t Ht pCl i ent | ODi spat ch(ph,
new Def aul t NHt t pCl i ent Connecti onFact or y(Connecti onConfi g. DEFAULT)) ;
Connecti ngl OReact or ioreactor = new Def aul t Connecti ngl OReactor ();
i oreact or. execut e(i oEvent Di spat ch) ;

The Ht tpAsyncRequester Uutility class can be used to abstract away low level details of
Ht t pAsyncRequest Execut i onHandl er management. Please note Htt pAsyncRequest er SUpports
single HTTP request / response exchanges only. It does not support HT TP authentication and does not
handle redirects automatically.

35

Asynchronous 1/0 based on NIO

Ht t pProcessor httpproc = HttpProcessorBuil der.create()
. add(new Request Content ())
. add(new Request Tar get Host ())
. add(new Request ConnControl ())
.add(new Request User Agent (" MyAgent - HTTP/ 1. 1"))
. add(new Request Expect Conti nue(true))
Lbuild();
Ht t pAsyncRequest er requester = new H t pAsyncRequester (htt pproc);
NHt t pdl i ent Connecti on conn = <...>
Fut ur e<Ht t pResponse> future = requester. execute(
new Basi cAsyncRequest Pr oducer (
new Htt pHost ("I ocal host "),
new Basi cHt t pRequest (" GET", "/")),
new Basi cAsyncResponseConsuner (),
conn);
Ht t pResponse response = future.get();

3.8.2.1. Asynchronous HTTP request producer

Ht t pAsyncRequest Producer facilitates the process of asynchronous generation of HTTP requests. It
isacallback interface whose methods get invoked to generate an HT TP request message and to stream
message content to a non-blocking client side HT TP connection.

Repeatable request producers capable of generating the same request message more than once can be
reset to their initial state by calling the reset Request () method, at which point request producers
are expected to release currently allocated resources that are no longer needed or re-acquire resources
needed to repest the process.

HTTP /O events and methods as defined by the H: t pAsyncRequest Producer interface:
e getTarget: Invoked to obtain the request target host.

e generateRequest: InvokedtogenerateaHTTP request message header. The messageisexpected
to implement the Ht t pEnt i t yEncl osi ngRequest interfaceif it isto enclose a content entity.

* produceContent: Invoked to write out a chunk of content to the Cont ent Encoder. The
| OCont r ol interface can be used to suspend output events if the producer is temporarily
unable to produce more content. When all content is finished, the producer MUST call
Cont ent Encoder #conpl et e() . Failure to do so may cause the entity to be incorrectly delimited
Please note that the Cont ent Encoder object is not thread-safe and should only be used within
the context of this method call. The 1 0Control object can be shared and used on other
thread resume output event notifications when more content is made available. This event is
invoked only for if the outgoing request message has a content entity enclosed in it, that is
Ht t pEnt i t yEncl osi ngRequest #get Entity() returnsnul |

* request Conpl eted: Invoked to signal that the request has been fully written out.
* failed: Invokedtosignal that the request processing terminated abnormally.

* resetRequest: Invokedto reset the producer toitsinitial state. Repeatable request producers are
expected to release currently allocated resources that are no longer needed or re-acquire resources
needed to repeat the process.

* close: Closesthe producer and releases all resources currently allocated by it.

Ht t pAsyncRequest Producer implementations are expected to be thread-safe.

36

Asynchronous 1/0 based on NIO

Basi cAsyncRequest Producer iSsabasic implementation of the Ht t pAsyncRequest Producer interface
shipped with the library. The producer can make use of the Htt pAsyncCont ent Producer interface to
efficiently stream out message content to a non-blocking HTTP connection, if it is implemented by
the Ht t pEnt i ty enclosed in the request.

3.8.2.2. Asynchronous HTTP response consumer

Ht t pAsyncResponseConsuner facilitates the process of asynchronous processing of HT TP responses.
It is a callback interface whose methods get invoked to process an HTTP response message and to
stream message content from a non-blocking client side HTTP connection.

HTTP I/O events and methods as defined by the H: t pAsyncResponseConsuner interface:
* responseRecei ved: Invoked when aHTTP response message is received.

e consuneCont ent : Invoked to process a chunk of content from the Cont ent Decoder. The
| 0Control interface can be used to suspend input events if the consumer is temporarily unable
to consume more content. The consumer can use the Cont ent Decoder #i sConpl eted() method
to find out whether or not the message content has been fully consumed. Please note that the
Cont ent Decoder object is not thread-safe and should only be used within the context of this method
call. Thel acont r ol object can be shared and used on other thread to resumeinput event notifications
when the consumer is capable of processing more content. This event is invoked only for if the
incoming response message has a content entity enclosed init.

* responseConpl eted: Invoked to signal that the response has been fully processed.
* failed: Invokedto signal that the response processing terminated abnormally.

e getException: Returns an exception in case of an abnormal termination. This method returns
nul | if the response processing is still ongoing or if it completed successfully.

e getResult: Returns a result of the response processing, when available. This method returns
nul | if the response processing is still ongoing.

e isbone: Determineswhether or not theresponse processing completed. If the response processing
terminated normally get Resul t () can be used to obtain the result. If the response processing
terminated abnormally get Excepti on() can be used to obtain the cause.

e close: Closesthe consumer and releases all resources currently allocated by it.
Ht t pAsyncResponseConsuner implementations are expected to be thread-safe.

Basi cAsyncResponseConsuner iS avery basic implementation of the Ht t pAsyncResponseConsumner
interface shipped with the library. Please note that this consumer buffers response content in memory
and therefore should be used for relatively small response messages.

3.9. Non-blocking connection pools

Non-blocking connection pools are quite similar to blocking one with one significant distinction that
they have to reply an 1/0 reactor to establish new connections. As a result connections leased from
anon-blocking pool are returned fully initialized and already bound to a particular 1/O session. Non-
blocking connections managed by a connection pool cannot be bound to an arbitrary 1/0O session.

37

Asynchronous 1/0 based on NIO

Htt pHost target = new HttpHost ("l ocal host");
Connecti ngl OReactor ioreactor = <...>
Basi cNl OConnPool connpool = new Basi cNl OConnPool (i oreactor);
connpool . | ease(target, null,
10, Ti neUnit. SECONDS,
new Fut ur eCal | back<Basi cNI OPool Entry>() {
@verride
public void conpl eted(Basi cNl OPool Entry entry) {
NHt t pd i ent Connecti on conn = entry. get Connection();
System out . println("Connection successfully |eased");
/1 Update connection context and request out put
conn. request Qut put () ;

}

@verride

public void fail ed(Exception ex) {
System out . println("Connection request failed");
ex. printStackTrace();

}

@verride
public void cancelled() {
}

1)

Please note due to event-driven nature of asynchronous communication model it is quite difficult
to ensure proper release of persistent connections back to the pool. One can make use of

Ht t pAsyncRequest er to handle connection lease and release behind the scene.

Connecti ngl OReactor ioreactor = <...>
Htt pProcessor httpproc = <...>
Basi cNI OConnPool connpool = new Basi cNI OConnPool (i or eactor);
Ht t pAsyncRequest er requester = new H t pAsyncRequester (htt pproc);
Htt pHost target = new Htt pHost ("Il ocal host");
Fut ur e<Ht t pResponse> future = requester. execut e(
new Basi cAsyncRequest Producer (
new Htt pHost ("1 ocal host"),
new Basi cHt t pRequest (" GET", "/")),
new Basi cAsyncResponseConsuner (),
connpool) ;

3.10. Pipelined request execution

In addition to the normal request / response execution mode Ht t pAsyncRequest er

is also capable of

executing requests in the so called pipelined mode whereby several requests are immediately written
out to the underlying connection. Please note that entity enclosing requests can be executed in the
pipelined mode but the 'expect: continue' handshake should be disabled (request messages should

contains no 'Expect: 100-continue' header).

Htt pProcessor httpproc = <...>

Ht t pAsyncRequest er requester = new Ht t pAsyncRequester (httpproc);

Htt pHost target = new HttpHost (" ww. apache. org");

Li st <Basi cAsyncRequest Producer > request Producers = Arrays. asLi st (
new Basi cAsyncRequest Producer (target, new Basi cH t pRequest (" GET",
new Basi cAsyncRequest Producer (target, new Basi cHtt pRequest (" GET",
new Basi cAsyncRequest Producer (target, new Basi cH t pRequest (" GET",

)

Li st <Basi cAsyncResponseConsuner > responseConsuners = Arrays. asLi st (
new Basi cAsyncResponseConsuner (),

"/index.htm ")),

"/foundation/index.htm ")),

"/ foundat i on/ how

38

i t-works. ht

Asynchronous 1/0 based on NIO

new Basi cAsyncResponseConsuner (),
new Basi cAsyncResponseConsuner ()
)
Ht t pCor eCont ext context = HttpCoreContext.create();
Fut ur e<Li st <Ht t pResponse>> future = requester. executePi pel i ned(
target, requestProducers, responseConsuners, pool, context, null);

Please notethat ol der web serversand especially older HT TP proxies may be unableto handle pipelined
requests correctly. Use the pipelined execution mode with caution.

3.11. Non-blocking TLS/SSL
3.11.1. SSL I/O session

SSLI CSessi on IS a decorator class intended to transparently extend any arbitrary | GSessi on with
transport layer security capabilities based on the SSL/TLS protocol. Default HTTP connection
implementations and protocol handlers should be able to work with SSL sessions without special
preconditions or modifications.

SSLCont ext ssl context = SSLCont ext. getlnstance("Default");
sslcontext.init(null, null, null);
/1 Plain I/ O session
| OSession iosession = <...>
SSLI CSessi on ssl session = new SSLI OSessi on(
i osessi on, SSLMde. CLI ENT, sslcontext, null);
i osession. set Attri but e(SSLI OSessi on. SESSI ON_KEY, ssl sessi on);
NHt t pd i ent Connecti on conn = new Def aul t NHt t pCl i ent Connect i on(
ssl session, 8 * 1024);

One can also use SSLNHtt pd i ent ConnectionFactory OF SSLNHtt pServer Connecti onFact ory
classes to conveniently create SSL encrypterd HT TP connections.

SSLCont ext ssl context = SSLCont ext.getlnstance("Default");

sslcontext.init(null, null, null);

/1 Plain I/ O session

| OSession iosession = <...>

SSLNHt t pd i ent Connecti onFactory connfactory = new SSLNHtt pCl i ent Connecti onFact or y(
ssl context, null, ConnectionConfig. DEFAULT);

NHt t pd i ent Connecti on conn = connfactory. createConnecti on(i osession);

3.11.1.1. SSL setup handler

Applications can customize various aspects of the TLS/SS protocol by passing a custom
implementation of the ssLSet upHandl er interface.

SSL events as defined by the SSLSet upHandl er interface:

* initalize: Triggered when the SSL connection is being initialized. The handler can use this

callback to customize properties of the javax. net.ssl.SSLEngi ne used to establish the SSL
session.

e verify: Triggered when the SSL connection has been established and initial SSL handshake
has been successfully completed. The handler can use this callback to verify properties of the
SSL Session. For instance this would be the right place to enforce SSL cipher strength, validate
certificate chain and do hosthame checks.

39

Asynchronous 1/0 based on NIO

SSLCont ext ssl context = SSLContexts. createDefaul t();
/1 Plain I/O session
| CSessi on iosession = <...>

SSLI CSessi on ssl session = new SSLI OSessi on(
i osessi on, SSLMbde. CLI ENT, sslcontext, new SSLSetupHandl er() {

public void initalize(final SSLEngi ne sslengine) throws SSLException {
/] Enforce TLS and disable SSL
ssl engi ne. set Enabl edPr ot ocol s(new String[] {
"TLSv1",
"TLSv1. 1",
"TLSv1. 2" });
/1 Enforce strong ciphers
ssl engi ne. set Enabl edCi pher Sui tes(new String[] {
"TLS_RSA W TH_AES_256_CBC_SHA",
"TLS_DHE_RSA W TH_AES 256_CBC_SHA",
"TLS_DHE_DSS_W TH_AES 256_CBC_SHA" });
}

public void verify(
final | OSession iosession,
final SSLSession sslsession) throws SSLException {
X509Certificate[] certs = sslsession.getPeerCertificateChain();
/| Exam ne peer certificate chain
for (X509Certificate cert: certs) {
Systemout.println(cert.toString());
}

55

SSLSet upHandl er impelemntations can also be used with the SSLNH: t pd i ent Connect i onFact ory Of
SSLNHt t pSer ver Connect i onFact ory Classes.

SSLCont ext ssl context = SSLCont exts. createDefaul t();
// Plain |I/O session
| OSession i osession = <...>

SSLSet upHandl er nyssl handl er = new SSLSet upHandl er () {

public void initalize(final SSLEngi ne sslengine) throws SSLException {
/1 Enforce TLS and di sable SSL
ssl engi ne. set Enabl edPr ot ocol s(new String[] {
"TLSv1",
"TLSv1. 1",
"TLSv1. 2" });

}

public void verify(
final | OSession iosession, final SSLSession sslsession) throws SSLException {

}

b

SSLNHt t pCl i ent Connecti onFactory connfactory = new SSLNHtt pCl i ent Connecti onFact or y(
ssl context, nyssl handl er, Connecti onConfi g. DEFAULT) ;

NHt t pd i ent Connecti on conn = connfactory. creat eConnecti on(i osession);

3.11.2. TLS/SSL aware I/O event dispatches

Default 1 CEventDispatch implementations shipped with the library such as
Def aul t Ht t pServer | ODi spatch and Defaul t H t pd i ent | CDi spat ch automatically detect SSL

40

Asynchronous 1/0 based on NIO

encrypted sessions and handle SSL transport aspects transparently. However, custom /O event
dispatchers that do not extend Abst r act | ODi spat ch are required to take some additional actions to
ensure correct functioning of the transport layer encryption.

« The I/O dispatch may need to call SSLI OSessi on#initalize() method in order to put the SSL
session either into a client or a server mode, if the SSL session has not been yet initialized.

» When the underlying 1/0 session isinput ready, the 1/O dispatcher should check whether the SSL 1/
O sessionisready to produce input databy calling SSLI CSessi on#i sAppl nput Ready() , passcontrol
totheprotocol handler if itis, andfinally call SSLI OSessi on#i nboundTr ansport () methodin order
to do the necessary SSL handshaking and decrypt input data.

* When the underlying /O session is output ready, the 1/O dispatcher should check whether the SSL 1/
O sessionisready to accept output databy calling SSLI GSessi on#i sAppQut put Ready() , passcontrol
to the protocol handler if it is, and finally call SSLI OSessi on#out boundTransport () method in
order to do the necessary SSL handshaking and encrypt application data.

3.12. Embedded non-blocking HTTP server

Asof version 4.4 HttpCore ships with an embedded non-blocking HT TP server based on non-blocking
I/O components described above.

Ht t pAsyncRequest Handl er <?> request Handler = <...>
Ht t pProcessor httpProcessor = <...>
Socket Confi g socket Config = Socket Confi g. cust om()
. set SoTi neout (15000)
. set TcpNoDel ay(true)
Lbuild();
final HttpServer server = ServerBootstrap. bootstrap()
. set Li st ener Port (8080)
.set Htt pProcessor (httpProcessor)
. set Socket Confi g(socket Confi g)
. set Except i onLogger (new St dErr or Excepti onLogger ())
.registerHandl er ("*", requestHandl er)
.create();
server.start();
server.awai t Term nati on(Long. MAX_VALUE, Ti meUnit.DAYS);

Runt i ne. get Runti me() . addShut downHook(new Thread() ({
@verride
public void run() {
server. shut down(5, Ti neUnit.SECONDS) ;
}
1)

41

Chapter 4. Advanced topics

4.1. HTTP message parsing and formatting framework

HTTP message processing framework is designed to be expressive and flexible while remaining
memory efficient and fast. HttpCore HT TP message processing code achieves near zero intermediate
garbage and near zero-copy buffering for its parsing and formatting operations. The same HTTP
message parsing and formatting APl and implementations are used by both the blocking and non-
blocking transport implementations, which helps ensure a consistent behavior of HTTP services
regardless of the I/0O model.

4.1.1. HTTP line parsing and formatting
HttpCore utilizes a number of low level components for all its line parsing and formatting methods.

Char Ar r ayBuf f er representsasequence of characters, usually asinglelineinan HT TP message stream
such as arequest line, a status line or a header. Internally char ArrayBuf f er is backed by an array of
chars, which can be expanded to accommodate more input if needed. Char ArrayBuf f er also provides
a number of utility methods for manipulating content of the buffer, storing more data and retrieving
subsets of data.

Char ArrayBuffer buf = new CharArrayBuffer(64);

buf . append("header: data ");

int i = buf.indexCOf(':");

String s = buf.substringTrimed(i + 1, buf.length());
System out.println(s);

System out.println(s.length());

stdout >

dat a

Par ser Cur sor represents acontext of a parsing operation: the bounds limiting the scope of the parsing
operation and the current position the parsing operation is expected to start at.

Char ArrayBuf fer buf = new CharArrayBuffer(64);

buf . append(“header: data ");

int i = buf.indexOr("':");

Par ser Cur sor cursor = new ParserCursor(0, buf.length());
cursor. updatePos(i + 1);

System out. println(cursor);

stdout >

[0>7>14]

Li nePar ser is the interface for parsing lines in the head section of an HTTP message. There are
individual methods for parsing a request line, a status line, or a header line. The lines to parse are
passed in-memory, the parser does not depend on any specific 1/0 mechanism.

42

Advanced topics

Char ArrayBuf fer buf = new CharArrayBuffer(64);
buf . append("HTTP/ 1.1 200");
Par ser Cur sor cursor = new ParserCursor (0, buf.length());

Li nePar ser parser = BasicLi neParser. | NSTANCE;
Pr ot ocol Versi on ver = parser. parseProtocol Versi on(buf, cursor);
System out . println(ver);
System out . printl n(buf.substringTri med(
cursor. get Pos(),
cur sor. get Upper Bound()));

stdout >

HTTP/ 1.1
200

Char ArrayBuffer buf = new CharArrayBuffer(64);

buf . append("HTTP/ 1.1 200 OK");

Par ser Cursor cursor = new ParserCursor (0, buf.length());
Li nePar ser parser = new Basi cLi neParser();

StatusLi ne sl = parser. parseStatusLi ne(buf, cursor);
System out . println(sl.get ReasonPhrase());

stdout >

(0.6

Li neFormat ter for formatting elements of the head section of an HTTP message. This is the
complement to Li nePar ser . There are individual methods for formatting arequest line, astatusline,
or aheader line.

Please note the formatting does not include the trailing line break sequence CRr- LF.

Char ArrayBuffer buf = new CharArrayBuffer(64);
Li neFormatter formatter = new BasicLi neFormatter();
formatter. format Request Li ne(buf,

new Basi cRequest Li ne("GET", "/", HttpVersion. HTTP_1_1));
System out. println(buf.toString());
formatter.fornmat Header (buf,

new Basi cHeader (" Cont ent - Type", "text/plain"));
System out. println(buf.toString());

stdout >

GET / HITP/ 1.1
Content - Type: text/plain

Header Val uePar ser isthe interface for parsing header values into el ements.

Char ArrayBuf fer buf = new CharArrayBuffer(64);
Header Val uePar ser parser = new Basi cHeader Val uePar ser () ;
buf . append(" nanel=val uel; paranil=pl, " +

"nane2 = \"value2\", nane3 = value3");
Par ser Cur sor cursor = new ParserCursor (0, buf.length());
System out . printl n(parser. par seHeader El ement (buf, cursor));

43

Advanced topics

System out . printl n(parser. par seHeader El enent (buf, cursor));
System out . printl n(parser. par seHeader El ement (buf, cursor));

stdout >

nanel=val uel; paranil=pl
nane2=val ue2
nane3=val ue3

Header Val ueFor mat ter is the interface for formatting elements of a header value. This is the
complement to Header Val uePar ser

Char ArrayBuffer buf = new CharArrayBuffer(64);
Header Val ueFormatter fornmatter = new Basi cHeader Val ueFormatter();
Header El ement[] hes = new HeaderEl ement[] {

new Basi cHeader El enent (" nanmel”, "val uel",

new NaneVal uePair[] {
new Basi cNaneVal uePai r (" paraml”, "pl")}),

new Basi cHeader El enent (" nane2", "val ue2"),

new Basi cHeader El enent (" nane3", "val ue3"),
b
formatter.format El ement s(buf, hes, true);
System out. println(buf.toString());

stdout >

nanel="val uel"; paranl="pl", nane2="val ue2", nane3="val ue3"

4.1.2. HTTP message streams and session /O buffers

HttpCore provides a number of utility classes for the blocking and non-blocking 1/0 models that
facilitatethe processing of HT TP message streams, simplify handling of cr- LF delimited linesinHTTP
messages and manage intermediate data buffering.

HTTP connection implementations usually rely on session i nput/output buffersfor reading and writing
datafrom and to an HT TP message stream. Session input/output buffer implementations are 1/0 model
specific and are optimized either for blocking or non-blocking operations.

Blocking HT TP connections use socket bound session buffersto transfer data. Session buffer interfaces
aresimilartoj ava. i o. | nput Stream/ j ava. i 0. Qut put St r eamclasses, but they also provide methods
for reading and writing CR- LF delimited lines.

Socket socketl = <...>

Socket socket2 = <...>

Htt pTransport Metricslnpl netrics = new HttpTransport Metricslnpl ();

Sessi onl nput Buf ferl npl inbuffer = new SessionlnputBufferlnpl (nmetrics, 8 * 1024);

i nbuf f er. bi nd(socket 1. get | nput Streamn());

Sessi onQut put Buf f er | npl out buf fer = new Sessi onCut put Buf ferlnpl (metrics, 8 * 1024);
out buf f er. bi nd(socket 2. get Qut put Strean());

Char ArrayBuffer |inebuf = new CharArrayBuf fer(1024);

i nbuf f er. readLi ne(linebuf);

out buffer.witeLine(linebuf);

Non-blocking HT TP connections use session buffers optimized for reading and writing data from and
to non-blocking NI1O channels. NIO session input/output sessions help deal with cr- LF delimited lines
in anon-blocking I/0 mode.

Advanced topics

Readabl eByt eChannel channel 1
Wit abl eByt eChannel channel 2

1
VvV Vv

Sessi onl nput Buf f er i nbuffer = new Sessi onl nputBufferlnpl (8 * 1024);
Sessi onQut put Buf f er out buffer = new Sessi onQut put Bufferlnpl (8 * 1024);

Char ArrayBuffer |inebuf = new CharArrayBuf fer(1024);
bool ean endOf Stream = fal se;
int bytesRead = inbuffer.fill(channell);
if (bytesRead == -1) {
endCf Stream = true;
}
i f (inbuffer.readLine(linebuf, endOfStream) {
out buffer.witeLine(linebuf);
}
if (outbuffer.hasData()) {
out buffer. flush(channel 2);

}

4.1.3. HTTP message parsers and formatters

HttpCore also provides coarse-grained facade type interfaces for parsing and formatting of HTTP
messages. Default implementations of those interfaces build upon the functionality provided
by SessionlnputBuffer / SessionCQutputBuffer and HitpLineParser / HitpLineFormatter
implementations.

Example of HTTP request parsing / writing for blocking HT TP connections:

Sessi onl nput Buffer inbuffer = <...>
Sessi onQut put Buf fer outbuffer = <...>

Ht t pMessagePar ser <Ht t pRequest > request Parser = new Def aul t Ht t pRequest Par ser (
i nbuf fer);

Ht t pRequest request = requestParser.parse();

Ht t pMessageW i t er <Ht t pRequest > request Witer = new Defaul t Ht t pRequest Wi t er (
out buffer);

request Witer.wite(request);

Example of HTTP response parsing / writing for blocking HTTP connections:

Sessi onl nput Buf fer inbuffer = <...>
Sessi onQut put Buf fer outbuffer = <...>

Ht t pMessagePar ser <Ht t pResponse> responsePar ser = new Def aul t H t pResponsePar ser (
i nbuffer);

Ht t pResponse response = responseParser. parse();

Htt pMessageW it er<Htt pResponse> responseWiter = new Defaul t H t pResponseWiter (
out buffer);

responseWiter.wite(response);

Custom message parsers and writers can be plugged into the message processing pipeline through a
custom connection factory:

Ht t pMessageW i t er Fact or y<Ht t pResponse> responseWiter Factory =
new Htt pMessageW it er Fact or y<Htt pResponse>() {
@verride
public HitpMessageWiter<HttpResponse> create(
Sessi onQut put Buf fer buffer) {

45

Advanced topics

Htt pMessageWiter<Htt pResponse> custonmWiter = <...>
return customiWiter;

b
Ht t pMessagePar ser Fact or y<Ht t pRequest > r equest Par ser Factory =
new Htt pMessagePar ser Fact or y<Ht t pRequest >() {
@verride
public H t pMessagePar ser <Ht t pRequest > creat e(
Sessi onl nput Buf fer buffer,
MessageConstrai nts constraints) {
Ht t pMessagePar ser <Ht t pRequest > cust onParser = <...>
return custonParser;

b
Ht t pConnect i onFact or y<Def aul t BHt t pSer ver Connecti on> cf =
new Def aul t BHt t pSer ver Connect i onFact or y(
Connect i onConfi g. DEFAULT,
request Par ser Factory,
responseWiterFactory);
Socket socket = <...>
Def aul t BHt t pSer ver Connecti on conn = cf. creat eConnecti on(socket);

Example of HTTP request parsing / writing for non-blocking HTTP connections:

Sessi onl nput Buf fer inbuffer = <...>
Sessi onQut put Buf fer outbuffer = <...>

NHt t pMessagePar ser <Ht t pRequest > request Parser = new Def aul t Ht t pRequest Par ser (
i nbuf fer);

Ht t pRequest request = request Parser. parse();

NHt t pMessageW it er<Htt pRequest > request Witer = new Defaul t H t pRequest Wit er(
out buffer);

request Witer.wite(request);

Example of HTTP response parsing / writing for non-blocking HTTP connections:

Sessi onl nput Buf fer inbuffer = <...>
Sessi onQut put Buf fer outbuffer = <...>

NHt t pMessagePar ser <Ht t pResponse> responsePar ser = new Def aul t Ht t pResponsePar ser (
i nbuf fer);

Ht t pResponse response = responseParser. parse();

NHt t pMessageW iter responseWiter = new Defaul t H t pResponseWi ter (
out buffer);

responseWiter.wite(response);

Custom non-blocking message parsers and writers can be plugged into the message processing pipeline
through a custom connection factory:

NHt t pMessageW i t er Fact or y<Ht t pResponse> responseWiterFactory =
new NHtt pMessageW it er Fact or y<Htt pResponse>() {
@verride
public NHtt pMessageWiter<H t pResponse> creat e(Sessi onCut put Buf fer buffer) {
NHt t pMessageW it er<Htt pResponse> custonWiter = <...>
return customWiter;

b
NHt t pMessagePar ser Fact or y<Ht t pRequest > r equest Par ser Factory =
new NHtt pMessagePar ser Fact or y<Ht t pRequest >() {
@verride
public NHtt pMessagePar ser <Htt pRequest > creat e(
Sessi onl nput Buf f er buffer, MessageConstraints constraints) {

46

Advanced topics

NHt t pMessagePar ser <Ht t pRequest > cust onParser = <...>
return custonParser;
}
b
NHt t pConnect i onFact or y<Def aul t NHt t pSer ver Connecti on> cf =
new Def aul t NHt t pSer ver Connect i onFact or y(

nul |,
request Par ser Fact ory,
responseWi ter Factory,
Connect i onConfi g. DEFAULT) ;

| OSessi on iosession = <...>

Def aul t NHt t pSer ver Connecti on conn = cf. creat eConnecti on(i osessi on);

4.1.4. HTTP header parsing on demand

The default implementations of Ht t pMessagePar ser and NHt t pMessagePar ser interfaces do not parse
HTTP headersimmediately. Parsing of header valueisdeferred until its properties are accessed. Those
headers that are never used by the application will not be parsed at al. The Char Ar r ayBuf f er backing
the header can be obtained through an optional For mat t edHeader interface.

Ht t pResponse response = <...>

Header hl = response. get Fir st Header (" Cont ent - Type");

if (hl instanceof FormattedHeader) {
Char ArrayBuffer buf = ((FormattedHeader) hl).getBuffer();
System out . println(buf);

47

	HttpCore Tutorial
	Table of Contents
	Preface
	1. HttpCore Scope
	2. HttpCore Goals
	3. What HttpCore is NOT

	Chapter 1. Fundamentals
	1.1. HTTP messages
	1.1.1. Structure
	1.1.2. Basic operations
	1.1.2.1. HTTP request message
	1.1.2.2. HTTP response message
	1.1.2.3. HTTP message common properties and methods

	1.1.3. HTTP entity
	1.1.3.1. Repeatable entities
	1.1.3.2. Using HTTP entities
	1.1.3.3. Ensuring release of system resources

	1.1.4. Creating entities
	1.1.4.1. BasicHttpEntity
	1.1.4.2. ByteArrayEntity
	1.1.4.3. StringEntity
	1.1.4.4. InputStreamEntity
	1.1.4.5. FileEntity
	1.1.4.6. HttpEntityWrapper
	1.1.4.7. BufferedHttpEntity

	1.2. HTTP protocol processors
	1.2.1. Standard protocol interceptors
	1.2.1.1. RequestContent
	1.2.1.2. ResponseContent
	1.2.1.3. RequestConnControl
	1.2.1.4. ResponseConnControl
	1.2.1.5. RequestDate
	1.2.1.6. ResponseDate
	1.2.1.7. RequestExpectContinue
	1.2.1.8. RequestTargetHost
	1.2.1.9. RequestUserAgent
	1.2.1.10. ResponseServer

	1.2.2. Working with protocol processors

	1.3. HTTP execution context
	1.3.1. Context sharing

	Chapter 2. Blocking I/O model
	2.1. Blocking HTTP connections
	2.1.1. Working with blocking HTTP connections
	2.1.2. Content transfer with blocking I/O
	2.1.3. Supported content transfer mechanisms
	2.1.4. Terminating HTTP connections

	2.2. HTTP exception handling
	2.2.1. Protocol exception

	2.3. Blocking HTTP protocol handlers
	2.3.1. HTTP service
	2.3.1.1. HTTP request handlers
	2.3.1.2. Request handler resolver
	2.3.1.3. Using HTTP service to handle requests

	2.3.2. HTTP request executor
	2.3.3. Connection persistence / re-use

	2.4. Connection pools
	2.5. TLS/SSL support
	2.6. Embedded HTTP server

	Chapter 3. Asynchronous I/O based on NIO
	3.1. Differences from other I/O frameworks
	3.2. I/O reactor
	3.2.1. I/O dispatchers
	3.2.2. I/O reactor shutdown
	3.2.3. I/O sessions
	3.2.4. I/O session state management
	3.2.5. I/O session event mask
	3.2.6. I/O session buffers
	3.2.7. I/O session shutdown
	3.2.8. Listening I/O reactors
	3.2.9. Connecting I/O reactors

	3.3. I/O reactor configuration
	3.3.1. Queuing of I/O interest set operations

	3.4. I/O reactor exception handling
	3.4.1. I/O reactor audit log

	3.5. Non-blocking HTTP connections
	3.5.1. Execution context of non-blocking HTTP connections
	3.5.2. Working with non-blocking HTTP connections
	3.5.3. HTTP I/O control
	3.5.4. Non-blocking content transfer
	3.5.5. Supported non-blocking content transfer mechanisms
	3.5.6. Direct channel I/O

	3.6. HTTP I/O event dispatchers
	3.7. Non-blocking HTTP content producers
	3.7.1. Creating non-blocking entities
	3.7.1.1. NByteArrayEntity
	3.7.1.2. NStringEntity
	3.7.1.3. NFileEntity

	3.8. Non-blocking HTTP protocol handlers
	3.8.1. Asynchronous HTTP service
	3.8.1.1. Non-blocking HTTP request handlers
	3.8.1.2. Asynchronous HTTP exchange
	3.8.1.3. Asynchronous HTTP request consumer
	3.8.1.4. Asynchronous HTTP response producer
	3.8.1.5. Non-blocking request handler resolver

	3.8.2. Asynchronous HTTP request executor
	3.8.2.1. Asynchronous HTTP request producer
	3.8.2.2. Asynchronous HTTP response consumer

	3.9. Non-blocking connection pools
	3.10. Pipelined request execution
	3.11. Non-blocking TLS/SSL
	3.11.1. SSL I/O session
	3.11.1.1. SSL setup handler

	3.11.2. TLS/SSL aware I/O event dispatches

	3.12. Embedded non-blocking HTTP server

	Chapter 4. Advanced topics
	4.1. HTTP message parsing and formatting framework
	4.1.1. HTTP line parsing and formatting
	4.1.2. HTTP message streams and session I/O buffers
	4.1.3. HTTP message parsers and formatters
	4.1.4. HTTP header parsing on demand

