HttpClient Tutorial

Oleg KalnichevskKi
Jonathan Moore
Jilles van Gurp

1. HEPCHENE SCOPE ..eeeeeiiiiee ettt ettt e e e e e e e e e e ann e e e s e nr e e e e e anneeeeeaans iv
2. What HEEPCTIENT 1S NOT .ottt e e iv
O 0o T 0 | = PSR 1
I o [0S S = (= o U1 1 o SRR 1
I O I = o T R PRROPPRI 1
N I I -5 0] 2
1.1.3. Working with message NEATENSovvviiiiiiiiiieee e 2
O o I = o1 SRR 3
1.1.5. Ensuring release of 10W 18VEl FE€SOUICEScvviiiiiiiiieiiiiee e 5
1.1.6. Consuming entity CONTENEcceieeiiiiiiiiiier e e e e e e e 6
1.1.7. Producing entity CONENEooiuiiiiiiiie et e e e e e e e e 6
1.1.8. RESPONSE NANUIESvvvviiiiiiiiiiiiiiiiiiiiiiiierrr e aearnenrnrarnsnsnsnnnnnnnnns 7

1.2, HUPCHENT INTEITACE ..ot 8
1.2.1. HtpClient thread SAFELYcooiiiiiieiiiiee et 8
1.2.2. HttpClient resource deallOCaIONeeiiiiiiiieiiiiie e 9

1.3. HTTP ©XECULION COMEXLeeieiitiieeeiiitieeeeitee e e et ee e sttt e et e e s s e e e s e e e nnees 9
1.4. HTTP protoCOl iNtErCEPLOISccci ittt e e e ettt e e e e e e e e s e e e e e e e s e enneees 10
1.5, Exception handling ..o 11
151, HTTP tranSport SEFELYoeeeiiiiiieeiiiiee e 11
1.5.2. 1dempotent MELNOUSooiiiiiiiei e 12
1.5.3. AUtOMAELIC EXCEPLION FECOVENYuivviieeeiiieee e ettt e e ettt e bt e et e e 12
1.5.4. Request retry handlerovveiiiiiei e 12

1.6. ADOIING FEOUESES ..veeeiiee ittt e e e e sttt e e e e e e et e e e e e e e s s e bbb e e e e e e e s sannrbrneeaaaeeaaaans 13
R (= o] = o 7= 00| 1T o R 13
2. CONNECLION MANAGEIMIENL ... eee e ettt e e e e e e e ettt e e e eeeesaanneeeeeeaeeeseaaneneeeeeeaeeesaannnneees 15
2.1. CONNECEION PEISISIEICE ...ccceeeieeeeiie e e e ettt e e ettt e e e e e s s e e e st e e e e b e e e nnb e e e e anneeas 15
2.2. HTTP CONNECION FOULING ...eeiiiuiitiieeiiiiie e ettt e e et e e st e e e e s e e e s snbe e e e e nnbeeee e e 15
2.2.1. ROULE COMPULALIONiiiiiie e e e e sttt e e e e e e a e e e s s e e e e e e e e e raaeeaeas 15
2.2.2. SeCUre HTTP CONNECLIONSeeeiiiiiieeiiiiieeesiieee et e et e et e e e s nnneeee s 15

2.3. HTTP CONNECLION MANAJELSeeveeeeieeeieieeeieeeieeereeeeeeeees 16
2.3.1. Managed connections and conNeCtion MaNaJErScceveeereirirreeieeeeeeenneieeeeen 16
2.3.2. SImple CONNECETION MANAGEYcciiuviiieeiiiie et e e 16
2.3.3. P00ling CONNECION MANAJESiuvreieeiiriiie et e ettt 17
2.3.4. Connection manager ShULdOWNccouiiiiiiiie e 17

2.4. Multithreaded reqUESt EXECULIONceiieeieiiiiiiier e e e e e e e e e e e e e e eanenes 17
2.5. ConnECtion VICtION POLICYcccoi ittt a e e e eeaaaeees 19
2.6. Connection Keep aliVe SIraegYcooviiieeiiiei et 20
2.7. ConNeCtion SOCKEL FACLOMESoieiiiiiiieee e e e e e e 20
2.7.1. SECUre SOCKEL AYEITNG ...eeeiiiriiieiiiiiie ettt e e 21
2.7.2. Integration with CONNECLION MANAGEYoiuviieeiiiiiee e 21
2.7.3. SSL/ITLS CUSIOMIZALTION ...vvvieiiiiiieeiiiiie e eiieee ettt e e e e s snbaeeeeane 21
2.7.4. HOStNAmME VEXTICAIONoveeiiiiiee e e ennaee e 21

2.8. HttpClient proXy CONfIQUIaioNuuuueuuuumuennnninnnnnnennnnnennnnnrnenrnnr———————.. 22
3. HTTP State ManagemMENLouveiiiiieeiiiiireie e e e e e e e e e s e e e e e e e s s s e e e e e e e e s s annrnnes 24
00 I I o0 == RPN 24
3.2. COOKIE SPECITICALIONScoueeeeieiiiiii ettt et e e e e e sbneeeeans 24
3.3. ChooSiNG COOKIE POIICY .ieeeeiiiiiiiieiee e e e e ettt e e e e e e e e e e e e s e e e aeeaens 25
3.4, CUSLOM COOKIE POLICY ..vvvveiiieeeiiitiieeee et e et e e e e e e e aaarneeas 26

HttpClient Tutorial

3.5, COOKIE PEFSISLENCE ... oo 26

3.6. HTTP state management and eXeCUtioN COMIEXTceerrrirrreeriiiieeeeiieeee e e 26

A, HTTP QUENENEICALIONvveiiiieeeiieiiiiiie et e e e e s st e e e e e e e s st e e e e e e e s e snntsaneeeaaeeenanns 28
A0, USEr CrEUENTIAIS ...uvvieieiiee et e e e s e e e e e s e st e e e e e e e e snnsnraaeeaaaeens 28

4.2. AUthentiCation SCHEMIESuuiiiiiiiiie e 28

4.3. CredentialS ProVIAEScccuiiiiiee e e e e e s e e e e e e e e 29

4.4. HTTP authentication and exeCution CONEEXEcc.uveiiirieeeeiiiiiiieeee e e e 30

4.5. Caching of authentiCation dala.............ocuvrrieiiiiiie e 31

4.6. Preemptive aUtNENtICAIIONcoiueiiiiiiiiee et 31

A.7. NTLM AULNENLICALION ..o ieiiieiee et e e e e e e s r e e e e e e s e raaeeeaeeenans 32
4.7.1. NTLM CONNECLION PEISISLENCE ..vvvvvieeeeiieiiiieeiee e e e e eecittee e e e e e e s s ssarrae e e e e e e e s eenneees 32

4.8. SPNEGOK erberos AULtNENtiCatiONeveiiiiiiiiiiiiie e 33
4.8.1. SPNEGO support in HItpClient ..., 33

4.8.2. GSS/Java Kerberos SEtUPcooiiiiiiiiiiiiiee e 33

4.83. login.conf file.. 34

4.8.4. krb5. conf [krb5.ini Fil€ ..o 34

4.8.5. Windows Specific CONfigUIrationccccuuiiiiireee i 34

ST 11 | R PSP UPRRROPPRR 36
51. Easy tousefacade APl ... 36
5.1.1. ReSPONSE NaNIING ..t 37

6. HTTP CACNINGeeieiiiiiiie ettt e e s st e e et e e e e e s e e e e annrneeeaas 38
6.1, GENEIal COMCEPESeeeiiiriieee ittt ie ettt e ettt e ettt e e et e e e sttt e e s s be e e e s st e e e e e e nbe e e e e nnnees 38

6.2. RFC-2616 COMPIIANCEuviiiieiiee e ettt ee e e ettt e e e e e e e st e e e e e e e s e anntraeeeeaeeseananes 39

6.3, EXAMPIE USBOEuviiiiiie ettt e e e e e e e st e e e e e e e s s e n e e e aaaeea s 39

6.4. CONFIQUIELIONcceeeeieie e 39

6.5. SLOrage BaCKeNdScooeeeiiiiiiee e e e e 40

7. ACVANCED TOPICS ...eteeee ettt ettt et e e et e e et e e e e e e e e e s e b e e e e e nnb e e e e e anbeeeeeann 41
7.1. Custom Client CONNECLIONSuviiiiiee et e e e e e e e e e s e e e e e e e s sneraaeeeeaeeesans 41

7.2. Stateful HTTP CONNECLIONSeeiiiiiiiiee ettt 41
7.2.1. User toKen NaNAIEroeiiiiiiiee e 42

7.2.2. Persistent stateful CONNECLIONSccooiiiiiiiiiiiiieie e 42

7.3. Using the FUtUreReqUEStEXECULIONSEIVICEuvveiiiieeeei e e e e 43
7.3.1. Creating the FutureReqUESIEXECULIONSEIVICEcuvveeeiiiiie e 43

7.3.2. SChedUITNG FEBQUESEScooiiiiiie ettt 43

7.3.3. CaNCEING tASKSuvviiiiiiee e i icitiie e e e s e e e e e s e s e e e e e e e s s nnrbaaeeeaaeeaaanes 44

734, CallDACKSeeeeiiiiie e 44

A BT 1Y = 1 [ox= SRRSO 44

Preface

TheHyper-Text Transfer Protocol (HTTP) isperhapsthe most significant protocol used on the Internet
today. Web services, network-enabled appliances and the growth of network computing continue to
expand the role of the HTTP protocol beyond user-driven web browsers, while increasing the number
of applications that require HT TP support.

Although thejava.net package providesbasic functionality for accessing resourcesviaHTTP, it doesn't
provide the full flexibility or functionality needed by many applications. HttpClient seeks to fill this
void by providing an efficient, up-to-date, and feature-rich package implementing the client side of
the most recent HT TP standards and recommendations.

Designed for extension while providing robust support for the base HTTP protocol, HttpClient may
be of interest to anyone building HT TP-aware client applications such as web browsers, web service
clients, or systems that leverage or extend the HT TP protocol for distributed communication.

1. HttpClient scope

« Client-side HTTP transport library based on HttpCore [http://hc.apache.org/httpcomponents-core/
index.html]

» Based on classic (blocking) 1/0

» Content agnostic

2. What HttpClient is NOT

e HttpClient is NOT a browser. It is a client side HTTP transport library. HttpClient's purpose is
to transmit and receive HTTP messages. HttpClient will not attempt to process content, execute
javascript embedded in HTML pages, try to guess content type, if not explicitly set, or reformat
request / rewrite location URIs, or other functionality unrelated to the HTTP transport.

http://hc.apache.org/httpcomponents-core/index.html
http://hc.apache.org/httpcomponents-core/index.html
http://hc.apache.org/httpcomponents-core/index.html

Chapter 1. Fundamentals

1.1. Request execution

The most essential function of HttpClient isto execute HT TP methods. Execution of an HTTP method
involves one or several HTTP request / HTTP response exchanges, usually handled internally by
HttpClient. The user is expected to provide a request object to execute and HttpClient is expected to
transmit the request to the target server return a corresponding response object, or throw an exception
if execution was unsuccessful.

Quite naturally, the main entry point of the HttpClient API is the HttpClient interface that defines the
contract described above.

Here is an example of request execution processin its simplest form:

Cl oseabl eHttpClient httpclient = HtpCients.createDefault();
Htt pGet httpget = new H tpGet("http://Ilocal host/");
Cl oseabl eHt t pResponse response = httpclient.execute(httpget);

try {
<...>
} finally {

response. cl ose();

}

1.1.1. HTTP request

All HTTP requests have areguest line consisting amethod name, arequest URI and an HT TP protocol
version.

HttpClient supports out of the box al HTTP methods defined in the HTTP/1.1 specification: GeT,
HEAD, POST, PUT, DELETE, TRACE and OPTI ONS. Thereisaspecific classfor each method type.: Ht t pGet ,
Ht t pHead, Ht t pPost , Ht t pPut , Ht t pDel et e, Ht t pTrace, and Ht t pOpt i ons.

The Request-URI is a Uniform Resource Identifier that identifies the resource upon which to apply
the request. HTTP request URIs consist of aprotocol scheme, host name, optional port, resource path,
optional query, and optional fragment.

Htt pGet httpget = new HttpCet (
"“http://ww. googl e. com’ sear ch?hl =en&qg=ht t pcl i ent &t nG=Coogl e+Sear ch&aq=f &q=") ;

HttpClient provides URI Bui | der utility classto simplify creation and modification of request URIs.

URI uri = new URI Bui | der ()
.set Scheme("http")
. set Host (" ww. googl e. cont')
. set Pat h("/search")

.setParaneter("q", "httpclient")

. set Paraneter ("btnG', "Google Search")
.set Paraneter("aq", "f")

.set Paraneter("oq", "")

Lbuild();

Htt pGet httpget = new HttpGet (uri);

Fundamentals

System out. println(httpget.getURI()); ‘

stdout >

http://ww. googl e. conf sear ch?q=htt pcl i ent &t nG=Googl e+Sear ch&aq=f &oq=

1.1.2. HTTP response

HTTP response is amessage sent by the server back to the client after having received and interpreted
areguest message. Thefirst line of that message consists of the protocol version followed by anumeric
status code and its associated textual phrase.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1_1,
Htt pStatus. SC K, "OK");

System out . println(response. get Protocol Version());

System out. println(response. get St at usLi ne() . get Stat usCode());
System out . println(response. get St at usLi ne(). get ReasonPhrase());
System out . println(response. get StatusLine().toString());

stdout >

HTTP/ 1.1

200

(0.¢

HTTP/ 1.1 200 OK

1.1.3. Working with message headers

An HTTP message can contain a number of headers describing properties of the message such as
the content length, content type and so on. HttpClient provides methods to retrieve, add, remove and

enumerate headers.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,

Htt pStatus. SC OK, "OK");
response. addHeader (" Set - Cooki e",

"cl=a; path=/; domain=local host");
response. addHeader (" Set - Cooki e",

"c2=b; path=\"/\", c3=c; domain=\"local host\"");
Header hl = response. get First Header (" Set - Cooki e") ;
System out . println(hl);

Header h2 = response. get Last Header (" Set - Cooki e") ;
System out. println(h2);

Header[] hs = response. get Header s(" Set - Cooki e") ;
Systemout. println(hs.|length);

stdout >

Set - Cooki e: cl=a; path=/; domai n=l ocal host
Set - Cooki e: c¢2=b; path="/", c3=c; donmi n="Iocal host"
2

The most efficient way to obtain all headers of agiven typeisby using the Header I t er at or interface.

Fundamentals

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,
Htt pStatus. SC OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; dommin=\"|ocal host\"");

Headerlterator it = response. headerlterator("Set-Cookie");

while (it.hasNext()) {
Systemout.println(it.next());

}

stdout >

Set - Cooki e: cl=a; path=/; donmi n=Il ocal host
Set - Cooki e: c¢2=b; path="/", c3=c; dommi n="I|ocal host"

It also provides convenience methods to parse HT TP messages into individual header elements.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,
Htt pStatus. SC OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; domain=\"|ocal host\"");

Header El ement Iterator it = new Basi cHeader El enent | terat or(
response. header | t erat or (" Set - Cooki e"));

while (it.hasNext()) {
Header El ement el em = it.nextEl enent();
Systemout.println(elemgetNane() + " =" + elemgetValue());
NanmeVal uePair[] paranms = el em get Paraneters();
for (int i =0; i < paranms.length; i++) {
Systemout.printin(" " + parans[i]);

}

stdout >

cl = a
pat h=/
domai n=Il ocal host
c2 =b
pat h=/
c3 =¢c
domai n=l ocal host

1.1.4. HTTP entity

HT TP messages can carry acontent entity associated with the request or response. Entities can befound
in some requests and in some responses, as they are optional. Requests that use entities are referred
to as entity enclosing requests. The HT TP specification defines two entity enclosing request methods:
POST and PUT. Responses are usually expected to enclose a content entity. There are exceptionsto this
rule such as responses to HEAD method and 204 No Cont ent, 304 Not Modifi ed, 205 Reset Cont ent

responses.

HttpClient distinguishes three kinds of entities, depending on where their content originates:

Fundamentals

e streamed: The content is received from a stream, or generated on the fly. In particular, this
category includes entities being received from HT TP responses. Streamed entities are generally not
repeatable.

o self-contained: The content is in memory or obtained by means that are independent from a
connection or other entity. Self-contained entities are generally repeatable. Thistype of entitieswill
be mostly used for entity enclosing HTTP requests.

e wrapping: The content is abtained from another entity.

This distinction isimportant for connection management when streaming out content from an HTTP
response. For request entities that are created by an application and only sent using HttpClient, the
difference between streamed and self-contained is of little importance. In that case, it is suggested to
consider non-repeatabl e entities as streamed, and those that are repeatable as self-contained.

1.1.4.1. Repeatable entities

An entity can be repeatable, meaning its content can be read more than once. Thisisonly possible with
self contained entities (like Byt eArrayEntity Of StringEntity)

1.1.4.2. Using HTTP entities

Since an entity can represent both binary and character content, it has support for character encodings
(to support the latter, ie. character content).

Theentity iscreated when executing arequest with enclosed content or when the request was successful
and the response body is used to send the result back to the client.

To read the content from the entity, one can either retrieve the input stream via the
Ht t pEnt i t y#get Cont ent () method, which returns an j ava. i o. I nput St ream Or one can supply an
output streamtotheHt t pEnt i t y#wri t eTo(Qut put St rean) method, which will return once al content
has been written to the given stream.

When the entity has been received with an incoming message, the methods
Ht t pEnt i t y#get Cont ent Type() and Htt pEntit y#get Cont ent Lengt h() methods can be used for
reading the common metadata such as Cont ent - Type and Cont ent - Lengt h headers (if they are
available). Since the cont ent - Type header can contain a character encoding for text mime-types
like text/plain or text/html, the Htt pEnti t y#get Cont ent Encodi ng() method is used to read this
information. If the headers aren't available, alength of -1 will be returned, and NULL for the content
type. If the Cont ent - Type header is available, aHeader object will be returned.

When creating an entity for a outgoing message, this meta data has to be supplied by the creator of
the entity.

StringEntity nmyEntity = new StringEntity("inportant nessage",
Cont ent Type. create("text/plain", "UTF-8"));

System out. println(nmyEntity. get Content Type());

System out. println(myEntity. get ContentLength());
Systemout.printIn(EntityUtils.toString(nyEntity));
Systemout.printin(EntityUils.toByteArray(nyEntity).length);

stdout >

Fundamentals

Cont ent - Type: text/plain; charset=utf-8
17

i nportant nessage

17

1.1.5. Ensuring release of low level resources

In order to ensure proper rel ease of system resources one must close either the content stream associated
with the entity or the response itself

Cl oseabl eHttpClient httpclient = HitpCients.createDefaul t();
Htt pGet httpget = new H tpGet("http://Ilocal host/");
Cl oseabl eHt t pResponse response = httpclient.execute(httpget);
try {
HtpEntity entity = response.getEntity();
if (entity !'=null) {
I nput Stream i nstream = entity.get Content();

try {
/1 do sonet hing useful
} finally {

i nstream cl ose();
}
}
} finally {
response. cl ose();

}

The difference between closing the content stream and closing the response is that the former will
attempt to keep the underlying connection alive by consuming the entity content while the latter
immediately shuts down and discards the connection.

Please note that the Ht t pEnti t y#wr i t eTo(Qut put St ream) method is also required to ensure proper
release of system resources oncethe entity has been fully written out. If thismethod obtains an instance
of java. i o. I nput Streamby calling Ht t pEnt i t y#get Cont ent (), it iSalso expected to close the stream
inafinally clause.

When working with streaming entities, one can usethe Enti tyUti | s#consume(Htt pEntity) method
to ensure that the entity content has been fully consumed and the underlying stream has been closed.

There can be situations, however, when only asmall portion of the entire response content needsto be
retrieved and the performance penalty for consuming the remaining content and making the connection
reusable is too high, in which case one can terminate the content stream by closing the response.

Closeabl eHttpClient httpclient = HtpCients.createDefault();
Htt pGet httpget = new HttpGet("http://Iocal host/");
Cl oseabl eHt t pResponse response = httpclient.execute(httpget);
try {
HtpEntity entity = response.getEntity();
if (entity !'=null) {
I nput Stream instream = entity. getContent();
int byteOne = instreamread();
int byteTwo = instreamread();
// Do not need the rest
}
} finally {
response. cl ose();

}

Fundamentals

The connection will not be reused, but all level resources held by it will be correctly deallocated.

1.1.6. Consuming entity content

The recommended way to consume the content of an entity isby using itSHt t pEnt i t y#get Cont ent ()

Or Ht t pEnti ty#wri t eTo(Qut put Stream) methods. HttpClient also comeswiththeEntityutil s class,
which exposes several static methods to more easily read the content or information from an entity.
Instead of reading the j ava. i o. I nput St r eamdirectly, one can retrieve the whole content body in a
string / byte array by using the methods from this class. However, the use of EntityUti | s isstrongly
discouraged unless the response entities originate from a trusted HTTP server and are known to be
of limited length.

Cl oseabl eHttpClient httpclient = HtpCients.createDefault();
Htt pGet httpget = new H tpGet("http://Ilocal host/");
Cl oseabl eHt t pResponse response = httpclient. execute(httpget);
try {
HtpEntity entity = response.getEntity();
if (entity '= null) {
long len = entity.getContentlLength();

if (len!=-1 & len < 2048) {
Systemout.printin(EntityUtils.toString(entity));
} else {

/1 Stream content out
}
}

} finally {
response. cl ose();

}

In some situations it may be necessary to be able to read entity content more than once. In this case
entity content must be buffered in some way, either in memory or on disk. The simplest way to
accomplish that is by wrapping the original entity with the Buf f er edHt t pEnt i ty class. Thiswill cause
the content of the original entity to beread into ain-memory buffer. In all other waysthe entity wrapper
will be have the original one.

Cl oseabl eHt t pResponse response = <...>
HtpEntity entity = response.getEntity();
if (entity !'= null) {

entity = new BufferedHttpEntity(entity);

}

1.1.7. Producing entity content

HttpClient provides several classes that can be used to efficiently stream out content throught HTTP
connections. Instances of those classes can be associated with entity enclosing requests such as
POST and PUT in order to enclose entity content into outgoing HTTP requests. HttpClient provides
several classes for most common data containers such as string, byte array, input stream, and file:
StringEntity,ByteArrayEntity, InputStreanEntity, andFil eEntity.

File file = new File("sonefile.txt");
FileEntity entity = new FileEntity(file,
Cont ent Type. create("text/plain", "UTF-8"));

Ht t pPost httppost = new HttpPost ("http://1ocal host/action.do");
ht t ppost. setEntity(entity);

Fundamentals

Please note | nput StreanEnt i ty iS not repeatable, because it can only read from the underlying data
stream once. Generaly it is recommended to implement a custom Ht t pEnti ty class which is self-
contained instead of using the generic | nput St reanEntity. Fi | eEntity can be agood starting point.

1.1.7.1. HTML forms

Many applications need to simulate the process of submitting an HTML form, for instance, in
order to log in to a web application or submit input data. HttpClient provides the entity class
Ur | EncodedFor nEnt i ty to facilitate the process.

Li st <NanmeVal uePai r> fornmparans = new ArraylLi st <NanmeVal uePair>();

f or rpar ans. add(new Basi cNaneVal uePai r (" paraml”, "val uel"));

f or npar ans. add(new Basi cNaneVal uePai r (" parank”, "val ue2"));

Url EncodedFornEntity entity = new Ul EncodedFor nEntity(fornparans, Consts.UTF_8);
Ht t pPost httppost = new HttpPost("http://1 ocal host/handl er. do");

htt ppost.setEntity(entity);

The ur | EncodedFor nEnt i ty instance will use the so called URL encoding to encode parameters and
produce the following content:

par anil=val uel&par an=val ue2

1.1.7.2. Content chunking

Generally it isrecommended to let HttpClient choose the most appropriate transfer encoding based on
the properties of the HT TP message being transferred. It is possible, however, to inform HttpClient that
chunk coding is preferred by setting Ht t pEnt i t y#set Chunked() to true. Please note that HttpClient
will use this flag as a hint only. This value will be ignored when using HTTP protocol versions that
do not support chunk coding, such asHTTP/1.0.

StringEntity entity = new StringEntity("inportant nessage",
Cont ent Type. create("plain/text", Consts.UTF_8));
entity. set Chunked(true);
Ht t pPost httppost = new HttpPost("http://|ocal host/acrtion.do");
htt ppost.setEntity(entity);

1.1.8. Response handlers

The simplest and the most convenient way to handle responses is by using the ResponseHand! er
interface, which includes the handl eResponse(Htt pResponse response) method. This method
completely relieves the user from having to worry about connection management. When using a
ResponseHandl er , HttpClient will automatically take care of ensuring release of the connection back
to the connection manager regardless whether the request execution succeeds or causes an exception.

Cl oseabl eHttpCient httpclient = HtpCients.createDefault();
Htt pGet httpget = new HttpGet("http://|ocal host/json");

ResponseHandl er <MyJsonbj ect > rh = new ResponseHandl er <MyJsonQbj ect >() {

@verride
public JsonObj ect handl eResponse(
final HtpResponse response) throws | OException {
St at usLi ne statusLine = response. get St at usLine();

Fundamentals

HtpEntity entity = response.getEntity();
i f (statusLine. getStatusCode() >= 300) {
t hrow new Ht t pResponseExcepti on(
st at usLi ne. get St at usCode(),
st at usLi ne. get ReasonPhrase());
}
if (entity == null) {
t hrow new Cl i ent Prot ocol Excepti on(" Response contains no content");
}
Gson gson = new GsonBuil der().create();
Cont ent Type content Type = Content Type. get Or Defaul t (entity);
Charset charset = content Type. get Charset ();
Reader reader = new | nput StreanReader(entity.getContent(), charset);
return gson.fromlson(reader, MyJsonObject. cl ass);
}
b
MyJsonObj ect nyjson = client.execute(httpget, rh);

1.2. HttpClient interface

Htt pd i ent interface represents the most essential contract for HTTP request execution. It imposes
no restrictions or particular details on the request execution process and leaves the specifics of
connection management, state management, authentication and redirect handling up to individual
implementations. Thisshould makeit easier to decorate the interface with additional functionality such
as response content caching.

Generaly H t pdient implementations act as a facade to a number of special purpose handler or
strategy interface implementations responsiblefor handling of a particular aspect of the HT TP protocol
such as redirect or authentication handling or making decision about connection persistence and keep
alive duration. This enables the users to selectively replace default implementation of those aspects
with custom, application specific ones.

Connecti onKeepAl i veStrat egy keepAliveStrat = new Defaul t Connecti onKeepAl i veStrategy() {

@verride
public | ong get KeepAl i veDuration(
Ht t pResponse response,
Ht t pCont ext context) {
| ong keepAlive = super.get KeepAliveDuration(response, context);
if (keepAlive == -1) {
/| Keep connections alive 5 seconds if a keep-alive val ue
/1l has not be explicitly set by the server
keepAl i ve = 5000;
}

return keepAlive;

b

Cl oseabl eHttpClient httpclient = Htpdients.custom()
.set KeepAl i veStrat egy(keepAliveStrat)
Lbui I d();

1.2.1. HttpClient thread safety

Htt pd i ent implementations are expected to be thread safe. It isrecommended that the same instance
of this classis reused for multiple request executions.

Fundamentals

1.2.2. HttpClient resource deallocation

When an instance d oseableHttpdient iS no longer needed and is about to go out
of scope the connection manager associated with it must be shut down by calling the
d oseabl eHt t pd i ent #cl ose() method.

Cl oseableHttpClient httpclient = HtpCients.createDefault();

try {
<...>
} finally {

httpclient.close();

}

1.3. HTTP execution context

Originally HTTP has been designed as a stateless, response-request oriented protocol. However, real
world applications often need to be able to persist state information through several logically related
request-response exchanges. In order to enable applications to maintain a processing state HttpClient
allows HTTP requests to be executed within a particular execution context, referred to as HTTP
context. Multiple logically related requests can participate in alogical session if the same context is
reused between consecutive requests. HTTP context functionssimilarly toaj ava. uti | . Map<Stri ng,

bj ect >. It is simply a collection of arbitrary named values. An application can populate context
attributes prior to request execution or examine the context after the execution has been compl eted.

Ht t pCont ext can contain arbitrary objects and therefore may be unsafe to share between multiple
threads. It is recommended that each thread of execution maintains its own context.

In the course of HTTP request execution HttpClient adds the following attributes to the execution
context:

e Htt pConnect i on instance representing the actual connection to the target server.
e Htt pHost instance representing the connection target.
e Ht t pRout e instance representing the complete connection route

* Htt pRequest instance representing the actual HTTP request. The final HttpRequest object in the
execution context always represents the state of the message exactly as it was sent to the target
server. Per default HTTP/1.0 and HTTP/1.1 use relative request URIs. However if the request is
sent viaa proxy in a non-tunneling mode then the URI will be absolute.

e Ht t pResponse instance representing the actual HT TP response.

e java. | ang. Bool ean object representing the flag indicating whether the actual request hasbeen fully
transmitted to the connection target.

* Request Confi g object representing the actual request configuation.

* java.util.List<UR > object representing a collection of all redirect locations received in the
process of request execution.

Onecan use Ht t pd i ent Cont ext adaptor classto simplify interractions with the context state.

Fundamentals

Ht t pCont ext context = <...>

Htt pd i ent Cont ext clientContext = H tpd ientContext.adapt(context);
Htt pHost target = client Context.get Tar get Host () ;

Ht t pRequest request = client Context.get Request();

Ht t pResponse response = client Cont ext. get Response();

Request Confi g config = clientContext.get Request Config();

Multiple request sequences that represent alogically related session should be executed with the same
Ht t pCont ext instance to ensure automatic propagation of conversation context and state information
between requests.

Inthefollowing examplethe request configuration set by theinitial request will be kept in the execution
context and get propagated to the consecutive requests sharing the same context.

Cl oseableHttpClient httpclient = HtpCients.createDefault();
Request Confi g request Config = Request Confi g. cust om()

. set Socket Ti neout (1000)

. set Connect Ti meout (1000)

Lbuild();

HttpGet httpgetl = new HttpGet("http://Iocal host/1");
htt pget 1. set Confi g(request Confi g);
Cl oseabl eHt t pResponse responsel = httpclient.execute(httpgetl, context);

try {
HtpEntity entityl = responsel. getEntity();
} finally {

responsel. cl ose();

}
Htt pGet httpget2 = new HttpGet ("http://|ocal host/2");
Cl oseabl eHt t pResponse response2 = httpclient. execute(httpget2, context);

try {
HttpEntity entity2 = response2.getEntity();
} finally {

response?2. cl ose();

}

1.4. HTTP protocol interceptors

The HTTP protocol interceptor is a routine that implements a specific aspect of the HTTP protocol.
Usually protocol interceptors are expected to act upon one specific header or agroup of related headers
of the incoming message, or populate the outgoing message with one specific header or a group of
related headers. Protocol interceptors can also manipulate content entities enclosed with messages -
transparent content compression / decompression being a good example. Usually thisisaccomplished
by using the 'Decorator’ pattern where a wrapper entity class is used to decorate the original entity.
Several protocol interceptors can be combined to form one logical unit.

Protocol interceptors can collaborate by sharing information - such as a processing state - through the
HTTP execution context. Protocol interceptors can use HTTP context to store a processing state for
one request or several consecutive regquests.

Usually the order in which interceptors are executed should not matter aslong asthey do not depend on
aparticular state of the execution context. If protocol interceptors have interdependenciesand therefore
must be executed in a particular order, they should be added to the protocol processor in the same
sequence as their expected execution order.

Protocol interceptors must be implemented as thread-safe. Similarly to servlets, protocol interceptors
should not use instance variables unless access to those variablesis synchronized.

10

Fundamentals

Thisis an example of how local context can be used to persist a processing state between consecutive
requests:

Cl oseabl eHttpClient httpclient = HtpCients.custon()
.addl nt er cept or Last (new Htt pRequest I nterceptor() {

public void process(
final HttpRequest request,
final HttpContext context) throws HttpException, | OException {
Atomi cl nteger count = (Atomiclnteger) context.getAttribute("count");
request . addHeader (" Count", Integer.toString(count.getAndlncrenment()));

b
Lbuild();
At om cl nteger count = new Atom cl nteger(1);
Htt pd i ent Cont ext | ocal Context = HttpdientContext.create();

| ocal Cont ext.setAttribute("count", count);

Htt pGet httpget = new H tpGet("http://Ilocal host/");

for (int i =0; i < 10; i++) {
Cl oseabl eHt t pResponse response = httpclient.execute(httpget, |ocal Context);
try {
HtpEntity entity = response.getEntity();
} finally {

response. cl ose();

}

1.5. Exception handling

HTTP protocol processors can throw two types of exceptions: j ava. i o. | CExcepti on in case of an |/
O failure such as socket timeout or an socket reset and H: t pExcept i on that signals an HTTP failure
such asaviolation of the HTTP protocol. Usualy 1/O errors are considered non-fatal and recoverable,
whereas HT TP protocol errorsare considered fatal and cannot be automatically recovered from. Please
note that Hi tpdient implementations re-throw Htt pExceptionS as d i ent Prot ocol Except i on,
which isasubclass of j ava. i 0. | OExcept i on. This enables the users of Ht t pd i ent to handle both 1/
O errors and protocol violations from a single catch clause.

1.5.1. HTTP transport safety

It is important to understand that the HTTP protocol is not well suited to all types of applications.
HTTPisasimple request/response oriented protocol which was initially designed to support static or
dynamically generated content retrieval. It has never been intended to support transactional operations.
For instance, the HTTP server will consider its part of the contract fulfilled if it succeedsin receiving
and processing the request, generating a response and sending a status code back to the client. The
server will make no attempt to roll back the transaction if the client fails to receive the response in its
entirety due to a read timeout, a request cancellation or a system crash. If the client decides to retry
the same request, the server will inevitably end up executing the same transaction more than once. In
some cases this may lead to application data corruption or inconsistent application state.

Even though HTTP has never been designed to support transactional processing, it can still be used
as atransport protocol for mission critical applications provided certain conditions are met. To ensure
HTTP transport layer safety the system must ensure the idempotency of HTTP methods on the
application layer.

11

Fundamentals

1.5.2. Idempotent methods
HTTP/1.1 specification defines an idempotent method as

[Methods can also have the property of "idempotence" in that (aside from error or expiration issues)
the side-effects of N > O identical requestsis the same as for a single request]

In other wordsthe application ought to ensurethat it is prepared to deal with theimplicationsof multiple
execution of the same method. This can be achieved, for instance, by providing a unigue transaction
id and by other means of avoiding execution of the same logical operation.

Please note that this problem is not specific to HttpClient. Browser based applications are subject to
exactly the same issues related to HTTP methods non-idempotency.

By default HttpClient assumes only non-entity enclosing methods such as GET and HEAD to be
idempotent and entity enclosing methods such as PosT and PUT to be not for compatibility reasons.

1.5.3. Automatic exception recovery

By default HttpClient attemptsto automatically recover from 1/O exceptions. The default auto-recovery
mechanismis limited to just afew exceptions that are known to be safe.

 HttpClient will make no attempt to recover from any logical or HTTP protocol errors (those derived
from Ht t pExcept i on class).

» HttpClient will automatically retry those methods that are assumed to be idempotent.

« HttpClient will automatically retry those methodsthat fail with atransport exception whiletheHTTP
request is till being transmitted to the target server (i.e. the request has not been fully transmitted
to the server).

1.5.4. Request retry handler

In order to enable a custom exception recovery mechanism one should provide an implementation of
the Ht t pRequest Ret r yHandl er interface.

Ht t pRequest Ret r yHandl er nyRetryHandl er = new Htt pRequest RetryHandl er () {

publ i c bool ean retryRequest (

| OExcepti on exception,
i nt executi onCount,
Ht t pCont ext context) {

i f (executionCount >= 5) {
/1 Do not retry if over nmax retry count
return fal se;

}

i f (exception instanceof |nterruptedl OException) {
/1 Ti meout
return fal se;

}

if (exception instanceof UnknownHost Exception) {
/1 Unknown host
return fal se;

}

i f (exception instanceof Connect Ti meout Exception) {
/1 Connection refused
return fal se;

12

Fundamentals

}

if (exception instanceof SSLException) {
/1 SSL handshake exception
return fal se;
}
Ht t pd i ent Cont ext clientContext = Httpd ient Context.adapt (context);
Ht t pRequest request = client Context.get Request();
bool ean idenpotent = !(request instanceof HttpEntityEnclosi ngRequest);
if (idenpotent) {
/Il Retry if the request is considered idenpotent
return true;

}

return fal se;

b

Cl oseabl eHttpClient httpclient = HtpCdients.custon()
. set Ret ryHandl er (nyRet r yHandl er)
Lbuild();

Please note that one can use St andar dHt t pRequest Ret r yHandl er instead of the one used by default in
order to treat those request methods defined asidempotent by RFC-2616 as safe to retry automatically:
GET, HEAD, PUT, DELETE, OPTI ONS, and TRACE.

1.6. Aborting requests

In some situations HTTP request execution fails to complete within the expected time frame due to
high load on the target server or too many concurrent requests issued on the client side. In such cases
it may be necessary to terminate the request prematurely and unblock the execution thread blocked in
al/O operation. HTTP requests being executed by HttpClient can be aborted at any stage of execution
by invoking Ht t pUr i Request #abor t () method. Thismethod isthread-safe and can be called from any
thread. When an HTTP request is aborted its execution thread - even if currently blocked in an I/O
operation - is guaranteed to unblock by throwing ai nt er r upt edl CExcept i on

1.7. Redirect handling

HttpClient handles all types of redirects automatically, except those explicitly prohibited by the HTTP
specification as requiring user intervention. See her (status code 303) redirects on POST and PUT
regquests are converted to GET requests as required by the HT TP specification. One can use a custom
redirect strategy to relaxe restrictions on automatic redirection of POST methodsimposed by theHTTP
specification.

LaxRedirect Strategy redirectStrategy = new LaxRedirect Strategy();
Cl oseabl eHttpCient httpclient = Htpdients.custom()

.set Redi rect Strategy(redirectStrategy)

Lbuild();

HttpClient often hasto rewritethe request messagein the processof itsexecution. Per default HTTP/1.0
and HTTP/1.1 generally use relative request URIs. Likewise, original request may get redirected from
location to another multiple times. The final interpreted absolute HTTP location can be built using
the origina request and the context. The utility method URI Ut i | s#r esol ve can be used to build the
interpreted absolute URI used to generate the final request. This method includes the last fragment
identifier from the redirect requests or the original regquest.

13

Fundamentals

Cl oseabl eHttpClient httpclient = HtpCients.createDefault();

Htt pd i ent Cont ext context = HtpCientContext.create();

Htt pGet httpget = new HttpGet("http://I|ocal host:8080/");

Cl oseabl eHt t pResponse response = httpclient.execute(httpget, context);

try {
Ht t pHost target = context.get Target Host ();
Li st <URI > redirectLocations = context.getRedirectLocations();
URl location = URIUils.resolve(httpget.getURI (), target, redirectlLocations);
Systemout.println("Final HITP location: " + location.toASCIIString());
/! Expected to be an absolute URI

} finally {
response. cl ose();

14

Chapter 2. Connection management

2.1. Connection persistence

The process of establishing a connection from one host to another is quite complex and involves
multiple packet exchanges between two endpoints, which can be quite time consuming. The overhead
of connection handshaking can be significant, especially for small HT TP messages. One can achieve
amuch higher data throughput if open connections can be re-used to execute multiple requests.

HTTP/1.1 states that HTTP connections can be re-used for multiple requests per default. HTTP/1.0
compliant endpoints can also use a mechanism to explicitly communicate their preference to keep
connection alive and useit for multiple requests. HT TP agents can al so keep idle connections aive for
a certain period time in case a connection to the same target host is needed for subsequent requests.
The ability to keep connections alive is usually refered to as connection persistence. HttpClient fully
supports connection persistence.

2.2. HTTP connection routing

HttpClient is capable of establishing connections to the target host either directly or via a route that
may involve multiple intermediate connections - also referred to as hops. HttpClient differentiates
connections of a route into plain, tunneled and layered. The use of multiple intermediate proxies to
tunnel connections to the target host is referred to as proxy chaining.

Plain routes are established by connecting to the target or the first and only proxy. Tunnelled routes
are established by connecting to thefirst and tunnelling through achain of proxiesto the target. Routes
without a proxy cannot be tunnelled. Layered routes are established by layering a protocol over an
existing connection. Protocol s can only belayered over atunnel to thetarget, or over adirect connection
without proxies.

2.2.1. Route computation

The Rout el nf o interface represents information about a definitive route to a target host involving
one or more intermediate steps or hops. Ht t pRout e iS a concrete implementation of the Rout el nf o,
which cannot be changed (is immutable). Ht t pTr acker isamutable Rout el nf o implementation used
internally by HttpClient to track the remaining hops to the ultimate route target. Ht t pTr acker can be
updated after a successful execution of the next hop towards the route target. Ht t pRout ebi rect or iS
a helper class that can be used to compute the next step in a route. This class is used internally by
HttpClient.

Ht t pRout ePl anner iSan interface representing astrategy to compute acomplete route to agiven target
based on the execution context. HttpClient shipswith two default Ht t pRout ePl anner implementations.
Syst emDef aul t Rout ePl anner iS based on j ava. net . ProxySel ect or . By default, it will pick up the
proxy settings of the VM, either from system properties or from the browser running the application.
The Def aul t ProxyRout ePl anner implementation does not make use of any Java system properties,
nor any system or browser proxy settings. It always computes routes via the same default proxy.

2.2.2. Secure HTTP connections

HTTP connections can be considered secure if information transmitted between two connection
endpoints cannot be read or tampered with by an unauthorized third party. The SSL/TLS protocol

15

Connection management

is the most widely used technique to ensure HTTP transport security. However, other encryption
techniques could be employed aswell. Usually, HTTPtransport islayered over the SSL/TL Sencrypted
connection.

2.3. HTTP connection managers

2.3.1. Managed connections and connection managers

HTTP connections are complex, stateful, thread-unsafe objects which need to be properly managed to
function correctly. HTTP connections can only be used by one execution thread at a time. HttpClient
employs a specia entity to manage access to HTTP connections called HTTP connection manager
and represented by theHt t pdl i ent Connect i onManager interface. The purpose of an HT TP connection
manager is to serve as a factory for new HTTP connections, to manage life cycle of persistent
connections and to synchronize access to persistent connections making sure that only one thread can
have access to a connection at a time. Internally HTTP connection managers work with instances of
ManagedHt t pdl i ent Connect i on acting asaproxy for areal connection that manages connection state
and controls execution of 1/0O operations. If a managed connection is released or get explicitly closed
by its consumer the underlying connection gets detached from its proxy and is returned back to the
manager. Even though the service consumer still holds areference to the proxy instance, it isno longer
able to execute any 1/0O operations or change the state of the real connection either intentionally or
unintentionally.

Thisis an example of acquiring a connection from a connection manager:

Htt pdl i ent Cont ext context = HttpdientContext.create();
Htt pCl i ent Connecti onManager connM g = new Basi cH t pd i ent Connecti onManager () ;
Htt pRoute route = new Ht t pRout e(new Htt pHost ("1 ocal host", 80));
// Request new connection. This can be a | ong process
Connect i onRequest connRequest = connM g. request Connecti on(route, null);
/1l Wait for connection up to 10 sec
Htt pd i ent Connecti on conn = connRequest . get (10, Ti neUnit. SECONDS);
try {
/1 1f not open
if (!conn.isOpen()) {
/'l establish connection based on its route info
connM g. connect (conn, route, 1000, context);
// and mark it as route conplete
connM g. rout eConpl et e(conn, route, context);

}

// Do useful things with the connection.

} finally {
connM g. rel easeConnection(conn, null, 1, TineUnit.M NUTES);

}

The connection request can be terminated prematurely by calling Connect i onRequest #cancel () if
necessary. Thiswill unblock the thread blocked in the Connect i onRequest #get () method.

2.3.2. Simple connection manager

Basi cHt t pd i ent Connect i onManager IS a simple connection manager that maintains only one
connection at atime. Even though this class is thread-safe it ought to be used by one execution thread
only. Basi cHt t pdl i ent Connect i onManager Will makean effort to reuse the connection for subsequent
requests with the same route. It will, however, close the existing connection and re-open it for the
given route, if the route of the persistent connection does not match that of the connection request. If
the connection has been already been allocated, then j ava. | ang. 111 egal St at eExcept i on iSthrown.

16

Connection management

This connection manager implementation should be used inside an EJB container.

2.3.3. Pooling connection manager

Pool i ngHt t pdl i ent Connect i onManager iS a more complex implementation that manages a pool
of client connections and is able to service connection requests from multiple execution threads.
Connections are pooled on a per route basis. A request for aroute for which the manager already has
a persistent connection available in the pool will be serviced by leasing a connection from the pool
rather than creating a brand new connection.

Pool i ngHt t pdl i ent Connect i onManager maintains a maximum limit of connections on a per route
basis and in total. Per default this implementation will create no more than 2 concurrent connections
per given route and no more 20 connections in total. For many real-world applications these limits
may prove too constraining, especialy if they use HTTP as a transport protocol for their services.

This example shows how the connection pool parameters can be adjusted:

Pool i ngHt t pd i ent Connect i onManager cm = new Pool i ngHt t pCl i ent Connect i onManager () ;
/1 Increase nmax total connection to 200

cm set MaxTot al (200) ;

/'l Increase default max connection per route to 20

cm set Def aul t MaxPer Rout e(20) ;

/'l Increase max connections for |ocal host:80 to 50

Ht t pHost | ocal host = new Htt pHost ("I ocahost”, 80);

cm set MaxPer Rout e(new Ht t pRout e(| ocal host), 50);

Cl oseabl eHttpClient httpCient = HtpCients.custom()
. set Connect i onManager (cm)
Lbui 1 d();

2.3.4. Connection manager shutdown

When an HttpClient instance is no longer needed and is about to go out of scopeit isimportant to shut
down its connection manager to ensure that al connections kept alive by the manager get closed and
system resources allocated by those connections are rel eased.

Cl oseableHttpClient httplient = <...>
httpdient.close();

2.4. Multithreaded request execution

When equipped with a pooling connection manager such as Pool i ngd i ent Connect i onManager ,
HttpClient can be used to execute multiple requests simultaneously using multiplethreads of execution.

The Pool i ngd i ent Connect i onManager Will allocate connections based on its configuration. If all
connections for a given route have already been leased, a request for a connection will block
until a connection is released back to the pool. One can ensure the connection manager does not
block indefinitely in the connection request operation by setting ' htt p. conn- manager . ti meout
to a positive value. If the connection request cannot be serviced within the given time period
Connect i onPool Ti neout Except i on will be thrown.

Pool i ngHt t pd i ent Connecti onManager cm = new Pool i ngHt t pd i ent Connecti onManager () ;

17

Connection management

Cl oseableHttpClient httplient = Htpdients.custon()
. set Connect i onManager (cm
Lbui I d();

// URI's to perform CETs on

String[] urisToGet = {
"http://ww. domai n1. com’ ",
"http://ww. domai n2. com’ ",
“http://ww. domai n3. conl ",
"http://ww. dormai n4. com’ "

e

Il create a thread for each URI
Get Thread[] threads = new Get Thread[urisToCet. | ength];
for (int i =0; i < threads.length; i++) {
Htt pGet httpget = new HttpGet (urisToGet[i]);
threads[i] = new Get Thread(httpCient, httpget);
}

/] start the threads

for (int j =0; j < threads.length; j++) {
threads[j].start();

}

// join the threads

for (int j =0; j < threads.length; j++) {
threads[j].join();

}

WhileHt t pc i ent instances are thread safe and can be shared between multiple threads of execution,
it is highly recommended that each thread maintains its own dedicated instance of Ht t pCont ext

static class Get Thread extends Thread {

private final Cl oseableHtpCient httpCient;
private final HttpContext context;
private final HtpGet httpget;

public GetThread(C oseableHttpClient httpCient, HtpGet httpget) {
this.httpCient = httpCdient;
this.context = HtpdientContext.create();
this. httpget = httpget;

}
@verride
public void run() {
try {
Cl oseabl eHt t pResponse response = httpCient. execute(
httpget, context);
try {
HtpEntity entity = response.getEntity();
} finally {
response. cl ose();
}
} catch (dientProtocol Exception ex) {
/1 Handl e protocol errors
} catch (1 OException ex) {
// Handle I/O errors
}
}

18

Connection management

2.5. Connection eviction policy

One of the major shortcomings of the classic blocking 1/0 model isthat the network socket can react to
1/0 events only when blocked in an 1/0 operation. When a connection is released back to the manager,
it can be kept alive however it is unable to monitor the status of the socket and react to any 1/0 events.
If the connection gets closed on the server side, the client side connection is unableto detect the change
in the connection state (and react appropriately by closing the socket on its end).

HttpClient tries to mitigate the problem by testing whether the connection is 'stal€, that is no
longer valid because it was closed on the server side, prior to using the connection for executing
an HTTP request. The stale connection check is not 100% reliable. The only feasible solution
that does not involve a one thread per socket model for idle connections is a dedicated monitor
thread used to evict connections that are considered expired due to a long period of inactivity.
The monitor thread can periodicaly call d i ent Connect i onManager #cl oseExpi r edConnect i ons()
method to close all expired connections and evict closed connections from the pool. It can also
optionally call d i ent Connect i onManager #cl osel dl eConnect i ons() method to closeall connections
that have been idle over a given period of time.

public static class |dl eConnectionhMnitorThread extends Thread {

private final HttpdientConnecti onManager connMr;
private volatile bool ean shutdown;

public |dl eConnectionMnitorThread(HttpC ientConnecti onManager connMyr) {
super () ;
this.connMgr = connMr;

}

@verride
public void run() {
try {
whi | e (!shutdown) {
synchroni zed (this) {
wai t (5000) ;
/1 O ose expired connections
connMyr . cl oseExpi redConnecti ons();
// Optionally, close connections
/1 that have been idle |onger than 30 sec
connMr . cl osel dl eConnecti ons(30, Ti neUnit.SECONDS);
}
}
} catch (InterruptedException ex) {
// term nate
}
}

public void shutdown() {
shutdown = true
synchroni zed (this) {
noti fyAll();
}

19

Connection management

2.6. Connection keep alive strategy

The HTTP specification does not specify how long a persistent connection may be and should be kept
alive. Some HTTP servers use a non-standard Keep- Al i ve header to communicate to the client the
period of time in seconds they intend to keep the connection alive on the server side. HttpClient makes
use of thisinformation if available. If the keep- Al i ve header isnot present in the response, HttpClient
assumes the connection can be kept alive indefinitely. However, many HTTP serversin genera use
are configured to drop persistent connections after a certain period of inactivity in order to conserve
system resources, quite often without informing the client. In case the default strategy turns out to be
too optimistic, one may want to provide a custom keep-alive strategy.

Connect i onKeepAl i veStrategy nyStrategy = new Connecti onKeepAliveStrategy() {

public | ong get KeepAliveDuration(H tpResponse response, HttpContext context) {
/1 Honor 'keep-alive' header
Header El enent I terator it = new Basi cHeader El enent |t erat or (
response. header |t erat or (HTTP. CONN_KEEP_ALI| VE)) ;
while (it.hasNext()) {
Header El enent he = it.nextEl enent();
String param = he. get Nane();
String val ue = he. getVal ue();
if (value !'= null && param equal sl gnoreCase("tinmeout")) {
try {
return Long. parselLong(val ue) * 1000;
} cat ch(Nunber For mat Excepti on i gnore) {
}
}

}
Htt pHost target = (HttpHost) context.getAttribute(

Ht t pd i ent Cont ext . HTTP_TARGET_HOST) ;
i f ("ww. naughty-server.coni. equal sl gnoreCase(target.get Host Nane())) {
/!l Keep alive for 5 seconds only
return 5 * 1000;
} else {
/'l otherwi se keep alive for 30 seconds
return 30 * 1000;

b

Cl oseableHttpClient client = HtpCients.custom()
. set KeepAl i veStr at egy(nyStr at egy)
Lbui 1 d();

2.7. Connection socket factories

HTTP connections make use of aj ava. net. Socket object internally to handle transmission of data
across the wire. However they rely on the Connecti onSocket Fact ory interface to create, initialize
and connect sockets. This enables the users of HttpClient to provide application specific socket
initialization code at runtime. Pl ai nConnect i onSocket Fact ory isthe default factory for creating and
initializing plain (unencrypted) sockets.

The process of creating a socket and that of connecting it to a host are decoupled, so that the socket
could be closed while being blocked in the connect operation.

Ht t pd i ent Cont ext cl i ent Cont ext
Pl ai nConnect i onSocket Factory sf

Ht t pdl i ent Cont ext . create();
Pl ai nConnect i onSocket Fact ory. get Socket Factory();

20

Connection management

Socket socket = sf.createSocket (clientContext);
int tineout = 1000; //ns
Htt pHost target = new HttpHost ("l ocal host");
| net Socket Addr ess renpt eAddress = new | net Socket Addr ess(
| net Addr ess. get ByAddr ess(new byte[] {127,0,0,1}), 80);
sf. connect Socket (ti meout, socket, target, renoteAddress, null, clientContext);

2.7.1. Secure socket layering

Layer edConnect i onSocket Factory IS an extension of the ConnectionSocket Fact ory interface.
Layered socket factories are capable of creating sockets layered over an existing plain socket.
Socket layering is used primarily for creating secure sockets through proxies. HttpClient ships with
SSLSocket Fact or y that implements SSL/TL Slayering. Please note HttpClient does not use any custom
encryption functionality. It is fully reliant on standard Java Cryptography (JCE) and Secure Sockets

(JSEE) extensions.
2.7.2. Integration with connection manager

Custom connection socket factories can be associated with a particular protocol scheme asas HTTP
or HTTPS and then used to create a custom connection manager.

Connecti onSocket Factory plainsf = <...>

Layer edConnect i onSocket Factory sslsf = <...>

Regi st ry<Connect i onSocket Fact ory> r = Regi stryBui |l der. <Connecti onSocket Fact ory>creat e()
.register("http", plainsf)
.register("https", sslsf)
Lbuild();

Ht t pd i ent Connect i onManager cm = new Pool i ngHt t pCl i ent Connect i onManager (r);
Htt pdients. custon()

. set Connect i onManager (cm)

.build();

2.7.3. SSL/TLS customization

HttpClient makes use of SSLConnectionSocketFactory tO create SSL connections.
SSLConnect i onSocket Fact ory alows for a high degree of customization. It can take an instance of
j avax. net. ssl . SSLCont ext asaparameter and useit to create custom configured SSL connections.

KeyStore nyTrustStore = <...>
SSLCont ext ssl Context = SSLCont exts. custon()
.l oadTrust Mat eri al (nyTrust Store)
Lbuild();
SSLConnect i onSocket Fact ory sslsf = new SSLConnecti onSocket Fact ory(ssl Cont ext);

Customization of SSLConnecti onSocket Factory implies a certain degree of familiarity with
the concepts of the SSL/TLS protocol, a detailed explanation of which is out of scope
for this document. Please refer to the Java™ Secure Socket Extension (JSSE) Reference
Guide [http://docs.oracle.com/javase/6/docs/technotes/guides/security/j sse/ ISSERef Guide.html] for a
detailed description of j avax. net . ssl . SSLCont ext and related tools.

2.7.4. Hostname verification

In addition to the trust verification and the client authentication performed on the SSL/
TLS protocol level, HttpClient can optionaly verify whether the target hosthame matches the

21

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html

Connection management

names stored inside the server's X.509 certificate, once the connection has been established.
This verification can provide additional guarantees of authenticity of the server trust material.
The j avax. net. ssl . Host naneVeri fi er interface represents a strategy for hostname verification.
HttpClient shipswithtwoj avax. net . ssl . Host naneVeri f i er implementations. Important: hostname
verification should not be confused with SSL trust verification.

e Defaul t HostnameVerifier: The default implementation used by HttpClient is expected to be
compliant with RFC 2818. The hostname must match any of alternative names specified by the
certificate, or in case no alternative names are given the most specific CN of the certificate subject.
A wildcard can occur in the CN, and in any of the subject-alts.

* NoopHost nameVerifier: This hostname verifier essentially turns hostname verification off. It
accepts any SSL session as valid and matching the target host.

Per default HitpClient uses the Def aul t Host naneVeri fier implementation. One can specify a
different hostname verifier implementation if desired

SSLCont ext ssl Context = SSLContexts. createSystenDefaul t();
SSLConnect i onSocket Fact ory sslsf = new SSLConnecti onSocket Fact ory(
ssl Cont ext,
NoopHost naneVeri fi er. | NSTANCE) ;

As of version 4.4 HttpClient uses the public suffix list kindly maintained by Mozilla Foundation to
make sure that wildcards in SSL certificates cannot be misused to apply to multiple domains with a
common top-level domain. HttpClient ships with acopy of thelist retrieved at the time of the release.
The latest revision of the list can found at https.//publicsuffix.org/list/ [https.//publicsuffix.org/list/
effective_tld_names.dat]. It is highly adviseable to make alocal copy of thelist and download the list
no more than once per day from its original location.

Publ i cSuf fi xiMat cher publicSuffixMatcher = Publ i cSuffixMatcherLoader. | oad(
Publ i cSuf fi xMat cher. cl ass. get Resour ce(" ny-copy-effective_tld_nanes.dat"));
Def aul t Host naneVeri fi er host naneVerifier = new Defaul t Host naneVeri fi er (publ i cSuf fi xMat cher);

One can disable verification against the public suffic list by using nul I matcher.

Def aul t Host naneVeri fi er hostnanmeVerifier = new Def aul t Host nameVerifier(null);

2.8. HttpClient proxy configuration

Even though HttpClient is aware of complex routing schemes and proxy chaining, it supports only
simple direct or one hop proxy connections out of the box.

The simplest way to tell HttpClient to connect to the target host via a proxy is by setting the default
proxy parameter:

Ht t pHost proxy = new Htt pHost (" soneproxy"”, 8080);
Def aul t ProxyRout ePl anner rout ePl anner = new Def aul t ProxyRout ePl anner (pr oxy) ;
Cl oseabl eHttpClient httpclient = HtpCients.custom()

. set Rout ePl anner (r out ePl anner)

Lbuild();

One can aso instruct HttpClient to use the standard JRE proxy selector to obtain proxy information:

22

https://publicsuffix.org/list/effective_tld_names.dat
https://publicsuffix.org/list/effective_tld_names.dat
https://publicsuffix.org/list/effective_tld_names.dat

Connection management

Syst enDef aul t Rout ePl anner rout ePl anner = new Syst enDef aul t Rout ePl anner (
ProxySel ector. get Defaul t());

Cl oseabl eHttpClient httpclient = Htpdients.custon()
. set Rout ePl anner (r out ePl anner)
Lbuild();

Alternatively, one can provide a custom Rout ePl anner implementation in order to have a complete
control over the process of HT TP route computation:

Ht t pRout ePl anner rout ePl anner = new Htt pRout ePl anner () {

public H tpRoute deterni neRout e(
Ht t pHost target,
Ht t pRequest request,
Ht t pCont ext context) throws H tpException {
return new HttpRoute(target, null, new HttpHost("sonmeproxy", 8080),
"https". equal sl gnoreCase(target. get SchenmeNane()));

b

Cl oseabl eHttpClient httpclient = HtpCdients.custom()
. set Rout ePl anner (r out ePl anner)
Lbuild();

23

Chapter 3. HTTP state management

Originally HTTP was designed as a statel ess, request / response oriented protocol that made no special
provisionsfor stateful sessions spanning across several logically related request / response exchanges.
As HTTP protocol grew in popularity and adoption more and more systems began to use it for
applications it was never intended for, for instance as a transport for e-commerce applications. Thus,
the support for state management became a necessity.

Netscape Communications, at that time a leading developer of web client and server software,
implemented support for HTTP state management in their products based on a proprietary
specification. Later, Netscape tried to standardise the mechanism by publishing a specification draft.
Those efforts contributed to the formal specification defined through the RFC standard track. However,
state management in asignificant number of applicationsisstill largely based on the Netscape draft and
is incompatible with the official specification. All major developers of web browsers felt compelled
to retain compatibility with those applications greatly contributing to the fragmentation of standards
compliance.

3.1. HTTP cookies

An HTTP cookie is a token or short packet of state information that the HTTP agent and the target
server can exchange to maintain a session. Netscape engineers used to refer to it as a "magic cookie"
and the name stuck.

HttpClient usesthe Cooki e interfaceto represent an abstract cookietoken. Initssimplest forman HTTP
cookie is merely a name / value pair. Usually an HTTP cookie also contains a number of attributes
such adomain for whichisvalid, apath that specifies the subset of URLs on the origin server to which
this cookie applies, and the maximum period of time for which the cookie is valid.

The Set Cooki e interface represents a Set - Cooki e response header sent by the origin server to the
HTTP agent in order to maintain a conversational state.

The a i ent Cooki e interface extends Cooki e interface with additional client specific functionality
such as the ability to retrieve original cookie attributes exactly as they were specified by the origin
server. Thisisimportant for generating the Cooki e header because some cookie specifications require
that the Cooki e header should include certain attributes only if they were specified in the Set - Cooki e
header.

Here is an example of creating a client-side cookie object:

Basi cd i ent Cooki e cooki e = new Basi cd i ent Cooki e("nane", "val ue");
/Il Set effective domain and path attributes

cooki e. set Domai n(". myconpany. cont') ;

cooki e.setPath("/");

/1 Set attributes exactly as sent by the server

cooki e.setAttribute(dientCookie. PATH ATTR, "/");

cooki e. setAttribute(C ientCookie. DOVAIN ATTR, ".nyconpany.com');

3.2. Cookie specifications

The Cooki eSpec interface represents a cookie management specification. The cookie management
specification is expected to enforce:

24

HTTP state management

 rules of parsing Set - Cooki e headers.

« rulesof validation of parsed cookies.

» formatting of Cooki e header for agiven host, port and path of origin.
HttpClient ships with several Cooki eSpec implementations:

e Standard strict: State management policy compliant with the syntax and semantics of the well-
behaved profile defined by RFC 6265, section 4.

e Standard: State management policy compliant with a more relaxed profile defined by RFC
6265, section 4 intended for interoperability with existing servers that do not conform to the well
behaved profile.

* Netscape draft (obsolete): This policy conforms to the origina draft specification published
by Netscape Communications. It should be avoided unless absolutely necessary for compatibility
with legacy code.

* RFC 2965 (obsolete): State management policy compliant with the obsolete state management
specification defined by RFC 2965. Please do not use in new applications.

* RFC 2109 (obsolete): State management policy compliant with the obsolete state management
specification defined by RFC 2109. Please do not use in new applications.

e Browser compatibility (obsolete): This policy strives to closely mimic the (mis)behavior of
older versions of browser applications such as Microsoft Internet Explorer and Mozilla FireFox.
Please do not use in new applications.

» Default: Default cookie policy is a synthetic policy that picks up either RFC 2965, RFC 2109
or Netscape draft compliant implementation based on properties of cookies sent with the HTTP
response (such as version attribute, now obsolete). This policy will be deprecated in favor of the
standard (RFC 6265 compliant) implementation in the next minor release of HttpClient.

» Ignorecookies: All cookiesareignored.

It is strongly recommended to use either St andard or Standard strict policy in new applications.
Obsol ete specifications should be used for compatibility with legacy systemsonly. Support for obsolete
specifications will be removed in the next mgjor release of HttpClient.

3.3. Choosing cookie policy

Cookie policy can be set at the HTTP client and overridden on the HTTP request level if required.

Request Confi g gl obal Config = Request Confi g. cust om()
. set Cooki eSpec(Cooki eSpecs. DEFAULT)
Lbui 1 d();
Cl oseabl eHttpClient httpclient = HtpCdients.custom()
. set Def aul t Request Confi g(gl obal Confi g)
Lbui 1 d();
Request Confi g | ocal Confi g = Request Confi g. copy(gl obal Confi g)
. set Cooki eSpec(Cooki eSpecs. STANDARD_STRI CT)
Lbui 1 d();

25

HTTP state management

HttpGet httpGet = new HtpGet("/");
httpCet. set Confi g(l ocal Confi g);

3.4. Custom cookie policy

In order to implement a custom cookie policy one should create a custom implementation of the
Cooki eSpec interface, create a Cooki eSpecPr ovi der implementation to create and initialize instances
of the custom specification and register the factory with HttpClient. Once the custom specification has

been registered, it can be activated the same way as a standard cookie specification.

Publ i cSuf fi xMat cher publ i cSuf fixMatcher = Publ i cSuffixMat cher Loader. get Defaul t ();

Regi st ry<Cooki eSpecProvi der> r = Regi stryBui |l der. <Cooki eSpecPr ovi der >creat e()
. regi st er (Cooki eSpecs. DEFAULT,
new Def aul t Cooki eSpecPr ovi der (publ i cSuf fi xMat cher))
. regi st er (Cooki eSpecs. STANDARD,
new RFC6265Cooki eSpecProvi der (publ i cSuffi xMat cher))
.register("easy", new EasySpecProvider())
Lbuild();

Request Confi g request Confi g = Request Confi g. cust om()
. set Cooki eSpec("easy")
Lbuil d();

Cl oseabl eHttpClient httpclient = Htpdients.custon()
. set Def aul t Cooki eSpecRegi stry(r)
. set Def aul t Request Confi g(request Confi g)
Lbuild();

3.5. Cookie persistence

HttpClient can work with any physical representation of a persistent cookie store that implements
the Cooki eSt or e interface. The default Cooki eSt or e implementation called Basi cCooki eStore isa
simple implementation backed by aj ava. uti | . ArraylLi st . Cookies stored in an Basi cC i ent Cooki e
object are lost when the container object get garbage collected. Users can provide more complex

implementations if necessary.

/1l Create a |ocal instance of cookie store

Cooki eSt ore cooki eStore = new Basi cCooki eStore();

/] Popul ate cookies if needed

Basi cd i ent Cooki e cooki e = new Basi cC i ent Cooki e("nane", "val ue");

cooki e. set Domai n(". myconpany. cont') ;

cooki e.setPath("/");

cooki eSt or e. addCooki e(cooki e) ;

/1 Set the store

Cl oseabl eHttpClient httpclient = HtpCients.customn()
. set Def aul t Cooki eSt or e(cooki eSt or e)
Lbuild();

3.6. HTTP state management and execution context

In the course of HTTP request execution HttpClient adds the following state management related

objects to the execution context:

* Lookup instance representing the actual cookie specification registry. The value of this attribute set

in the local context takes precedence over the default one.

26

HTTP state management

e Cooki eSpec instance representing the actual cookie specification.

e Cooki eOri gi n instance representing the actual details of the origin server.

* Cooki eSt or e instance representing the actual cookie store. The value of this attribute set in thelocal

context takes precedence over the default one.

The local H: t pCont ext Object can be used to customize the HTTP state management context prior
to request execution, or to examine its state after the request has been executed. One can aso use
separate execution contextsin order to implement per user (or per thread) state management. A cookie
specification registry and cookie store defined in thelocal context will take precedence over the default

ones set at the HTTP client level

Cl oseabl eHttpCient httpclient = <...>

Lookup<Cooki eSpecProvi der > cooki eSpecReg = <...>
Cooki eStore cookieStore = <...>

Htt pCl i ent Cont ext context = HtpCientContext.create();

cont ext . set Cooki eSpecRegi st ry(cooki eSpecReg) ;

cont ext . set Cooki eSt or e(cooki eSt ore) ;

Htt pGet httpget = new HitpGet("http://somehost/");

Cl oseabl eHt t pResponse responsel = httpclient. execute(httpget,
<...>

/'l Cookie origin details

Cooki eOrigin cookieOigin = context.getCookieOigin();

/| Cooki e spec used

Cooki eSpec cooki eSpec = cont ext. get Cooki eSpec();

context);

27

Chapter 4. HTTP authentication

HttpClient provides full support for authentication schemes defined by the HTTP standard
specification as well as a number of widely used non-standard authentication schemes such as NTLM
and SPNEGO.

4.1. User credentials

Any process of user authentication requires a set of credentials that can be used to establish
user identity. In the simplest form user credentials can be just a user name / password pair.
User nanePasswor dCr edent i al s represents a set of credentials consisting of a security principa and a
password in clear text. Thisimplementation is sufficient for standard authentication schemes defined
by the HTTP standard specification.

User nanePasswor dCr edenti al s creds = new User nanePasswor dCr edenti al s("user", "pwd");
System out . println(creds. getUserPrincipal ().getNane());
System out. println(creds. get Password());

stdout >

user
pwd

NTCr edent i al s isaMicrosoft Windows specific implementation that includes in addition to the user
name / password pair a set of additional Windows specific attributes such as the name of the user
domain. In a Microsoft Windows network the same user can belong to multiple domains each with a
different set of authorizations.

NTCredential s creds = new NTCredential s("user", "pwd", "workstation", "domain");
System out . println(creds. getUserPrincipal ().getNane());
System out. println(creds. get Password());

stdout >

DOVAI N/ user
pwd

4.2. Authentication schemes

The Aut hSchene interface represents an abstract challenge-response oriented authentication scheme.
An authentication scheme is expected to support the following functions:

» Parse and process the challenge sent by the target server in response to request for a protected
resource.

« Provide properties of the processed challenge: the authentication scheme type and its parameters,
such the realm this authentication scheme is applicable to, if available

28

HTTP authentication

« Generate the authorization string for the given set of credentials and the HTTP request in response
to the actual authorization challenge.

Please note that authentication schemes may be stateful involving a series of challenge-response
exchanges.

HttpClient ships with several Aut hSchene implementations:

» Basic: Basic authentication scheme as defined in RFC 2617. This authentication scheme is
insecure, as the credentials are transmitted in clear text. Despite its insecurity Basic authentication
scheme is perfectly adequate if used in combination with the TLS/SSL encryption.

« Digest. Digest authentication scheme as defined in RFC 2617. Digest authentication scheme is
significantly more secure than Basic and can be a good choice for those applications that do not
want the overhead of full transport security through TLS/SSL encryption.

« NTLM: NTLM isaproprietary authentication scheme developed by Microsoft and optimized
for Windows platforms. NTLM is believed to be more secure than Digest.

e SPNEGO: sPNeGo(Smple and Protected Gssapl Negotiation Mechanism) is a GssaApl "pseudo
mechanism" that is used to negotiate one of a number of possible real mechanisms. SPNEGO's
most visible use is in Microsoft's HTTP Negot i at e authentication extension. The negotiable sub-
mechanisms include NTLM and Kerberos supported by Active Directory. At present HttpClient
only supports the Kerberos sub-mechanism.

« Kerberos: Kerberos authentication implementation.

4.3. Credentials provider

Credentials providers are intended to maintain a set of user credentials and to be able to produce user
credentials for a particular authentication scope. Authentication scope consists of a host name, a port
number, a realm name and an authentication scheme name. When registering credentials with the
credentials provider one can provide awild card (any host, any port, any realm, any scheme) instead
of a concrete attribute value. The credentials provider is then expected to be able to find the closest
match for a particular scope if the direct match cannot be found.

HttpClient can work with any physical representation of a credentials provider that implements
the Credential sProvider interface. The default Oredential sProvider implementation called
Basi cCr edent i al sProvi der isasimple implementation backed by aj ava. uti | . Hashvap.

Credenti al sProvi der credsProvi der = new Basi cCredenti al sProvider();
credsProvi der. set Credenti al s(
new Aut hScope("sonehost"”, AuthScope. ANY_PORT),
new User nanePasswor dCr edenti al s("ul", "pl"));
credsProvi der. set Credenti al s(
new Aut hScope("sonmehost", 8080),
new User nanePasswor dCr edenti al s("u2", "p2"));
credsProvi der. set Credenti al s(
new Aut hScope("ot herhost", 8080, AuthScope. ANY_REALM "ntlni),
new User nanePasswor dCr edenti al s("u3", "p3"));

System out . println(credsProvider. get Credenti al s(
new Aut hScope("sonehost", 80, "realnt, "basic")));
System out. println(credsProvider. get Credenti al s(

29

HTTP authentication

new Aut hScope("sonehost", 8080, "realnt, "basic")));
System out . println(credsProvider. get Credenti al s(

new Aut hScope("ot herhost", 8080, "realnf, "basic")));
System out. println(credsProvider. get Credenti al s(

new Aut hScope("ot herhost”, 8080, null, "ntln)));

stdout >

[principal: ul]
[principal: u2]
nul |

[principal: u3]

4.4. HTTP authentication and execution context

HttpClient relies on the Aut hst at e class to keep track of detailed information about the state of the
authentication process. HttpClient creates two instances of Aut hst at e in the course of HTTP request
execution: onefor target host authentication and another onefor proxy authentication. In casethetarget
server or the proxy require user authentication the respective Aut hScope instancewill be populated with
the Aut hScope, Aut hSchenme and Cr ednet i al s used during the authentication process. The Aut hst at e
can be examined in order to find out what kind of authentication was requested, whether a matching
Aut hSchene implementation was found and whether the credentials provider managed to find user
credentials for the given authentication scope.

In the course of HTTP request execution HttpClient adds the following authentication related objects
to the execution context:

* Lookup instance representing the actual authentication scheme registry. The value of this attribute
set in the local context takes precedence over the default one.

e Credential sProvider instance representing the actua credentials provider. The value of this
attribute set in the local context takes precedence over the default one.

e Aut hSt at e instance representing the actual target authentication state. The value of this attribute set
in the local context takes precedence over the default one.

e Aut hSt at e instance representing the actual proxy authentication state. The value of this attribute set
in the local context takes precedence over the default one.

* Aut hCache instance representing the actual authentication data cache. The value of this attribute set
in the local context takes precedence over the default one.

The local Htt pCont ext object can be used to customize the HTTP authentication context prior to
reguest execution, or to examine its state after the request has been executed:

Cl oseabl eHttpClient httpclient = <...>

Credenti al sProvi der credsProvider = <...>
Lookup<Aut hScheneProvi der > aut hRegi stry = <...>
Aut hCache aut hCache = <...>

Htt pd i ent Cont ext context = HtpCientContext.create();
cont ext . set Credenti al sProvi der (credsProvi der);

cont ext . set Aut hScheneRegi stry(aut hRegi stry);

cont ext . set Aut hCache(aut hCache) ;

30

HTTP authentication

Htt pGet httpget = new H tpGet("http://sonmehost/");
Cl oseabl eHt t pResponse responsel = httpclient.execute(httpget, context);
<...>

Aut hSt at e proxyAut hState = cont ext. get ProxyAut hState();

Systemout.println("Proxy auth state: " + proxyAuthState.getState());

System out.println("Proxy auth schene: " + proxyAuthState. get Aut hSchene());

System out.println("Proxy auth credentials: " + proxyAuthState.getCredentials());
Aut hState target AuthState = context.get Target AuthState();
Systemout.println("Target auth state: " + targetAuthState.getState());

System out. println("Target auth schene: " + targetAuthState. get Aut hSchene());
Systemout.println("Target auth credentials: " + targetAuthState. getCredentials());

4.5. Caching of authentication data

As of version 4.1 HttpClient automatically caches information about hosts it has successfully
authenticated with. Please note that one must use the same execution context to execute logically
related requests in order for cached authentication data to propagate from one request to another.
Authentication data will be lost as soon as the execution context goes out of scope.

4.6. Preemptive authentication

HttpClient does not support preemptive authentication out of the box, because if misused or used
incorrectly the preemptive authentication can lead to significant security issues, such as sending user
credentials in clear text to an unauthorized third party. Therefore, users are expected to evaluate
potential benefits of preemptive authentication versus security risks in the context of their specific
application environment.

Nonetheless one can configure HttpClient to authenticate preemptively by prepopulating the
authentication data cache.

Cl oseabl eHttpClient httpclient = <...>

Htt pHost targetHost = new HttpHost ("l ocal host", 80, "http");
Credenti al sProvi der credsProvi der = new Basi cCredenti al sProvider();
credsProvi der. set Credenti al s(
new Aut hScope(t ar get Host . get Host Nane(), target Host.getPort()),
new User nanePasswor dCr edent i al s("user nane", "password"));

/'l Create AuthCache instance

Aut hCache aut hCache = new Basi cAut hCache();

/] Generate BASIC schene object and add it to the |local auth cache
Basi cSchenme basi cAuth = new Basi cSchene();

aut hCache. put (t arget Host, basi cAuth);

/1 Add Aut hCache to the execution context

Ht t pd i ent Cont ext context = Httpd ient Context.create();
cont ext . set Credenti al sProvi der (credsProvi der);

cont ext . set Aut hCache(aut hCache) ;

Htt pGet httpget = new HtpGet("/");
for (int i =0; i <3; i++) {
Cl oseabl eHt t pResponse response = httpclient. execute(
target Host, httpget, context);

try {
HttpEntity entity = response.getEntity();

} finally {
response. cl ose();

}

31

HTTP authentication

4.7. NTLM Authentication

As of version 4.1 HttpClient provides full support for NTLMv1, NTLMv2, and NTLM2 Session
authentication out of the box. One can still continue using an external NTLM engine such as JCIFS
[http://jcifs.samba.org/] library developed by the Samba [http://www.samba.org/] project as a part of
their Windows interoperability suite of programs.

4.7.1. NTLM connection persistence

The NTLMauthentication scheme is significantly more expensive in terms of computational overhead
and performance impact than the standard Basi ¢ and Di gest schemes. This is likely to be one of
the main reasons why Microsoft chose to make NTLM authentication scheme stateful. That is, once
authenticated, the user identity is associated with that connection for its entire life span. The stateful
nature of NTLM connections makes connection persistence more complex, as for the obvious reason
persistent NTLM connections may hot be re-used by users with a different user identity. The standard
connection managers shipped with HttpClient are fully capable of managing stateful connections.
However, it iscritically important that logically related requests within the same session use the same
execution context in order to make them aware of the current user identity. Otherwise, HttpClient will
end up creating anew HTTP connection for each HT TP request against NTLM protected resources. For
detailed discussion on stateful HT TP connections please refer to this section.

As NTLM connections are stateful it is generally recommended to trigger NTLM authentication using
a relatively cheap method, such as GET or HEAD, and re-use the same connection to execute more
expensive methods, especially those enclose a request entity, such as POST or PUT.

Cl oseabl eHttpClient httpclient = <...>

Credenti al sProvi der credsProvi der = new Basi cCredenti al sProvi der();
credsProvi der. set Credenti al s(Aut hScope. ANY,
new NTCredential s("user”, "pwd", "nmyworkstation", "mcrosoft.cont));

Htt pHost target = new HttpHost("ww. m crosoft.cont, 80, "http");

/'l Make sure the same context is used to execute logically related requests
Htt pCl i ent Cont ext context = HtpCientContext.create();
cont ext . set Credenti al sProvi der (credsProvi der);

/'l Execute a cheap nethod first. This will trigger NTLM aut henticati on
Htt pGet httpget = new HttpGet("/ntl mprotected/info");
Cl oseabl eHt t pResponse responsel = httpclient.execute(target, httpget, context);

try {
HtpEntity entityl = responsel. getEntity();
} finally {

responsel. cl ose();

}

/1l Execute an expensive nethod next reusing the sane context (and connecti on)

Ht t pPost httppost = new HttpPost ("/ntl mprotected/ forn');

ht t ppost . set Entity(new StringEntity("lots and |ots of data"));

Cl oseabl eHt t pResponse response2 = httpclient.execute(target, httppost, context);

try {
HtpEntity entity2 = response2.getEntity();
} finally {

response?2. cl ose();

}

32

http://jcifs.samba.org/
http://jcifs.samba.org/
http://www.samba.org/
http://www.samba.org/

HTTP authentication

4.8. sSPNecOKerberos Authentication

The sPNeGO (Smple and Protected Gssapl Negotiation Mechanism) is designed to alow for
authentication to serviceswhen neither end knowswhat the other can use/provide. Itismaost commonly
used to do Kerberos authentication. It can wrap other mechanisms, however the current version in
HttpClient is designed solely with Kerberos in mind.

1. Client Web Browser doesHTTP GET for resource.
2. Web server returns HTTP 401 status and a header: WiV Aut henti cate: Negoti at e

3. Client generates a NegTokenl nit, base64 encodes it, and resubmits the Ger with an
Authorization header: Aut hori zati on: Negotiate <base64 encodi ng>.

4. Server decodes the NegTokenl ni t, extracts the supported MechTypes (only Kerberos V5 in
our case), ensures it is one of the expected ones, and then extracts the MechToken (Kerberos
Token) and authenticates it.

If more processing is required another HTTP 401 is returned to the client with more datain
the the wwv Aut hent i cat e header. Client takes the info and generates another token passing
this back in the Aut hori zat i on header until complete.

5. When the client has been authenticated the Web server should return the HTTP 200 status, a
final W Aut hent i cat e header and the page content.

4.8.1. sPNEGO support in HttpClient

The SPNEGO authentication scheme is compatible with Sun Java versions 1.5 and up. However the use
of Java>= 1.6 is strongly recommended as it supports SPNEGO authentication more completely.

The Sun JRE provides the supporting classesto do nearly all the Kerberos and sPNeGotoken handling.
This meansthat alot of the setup isfor the GSS classes. The SPNegoSchene isasimple classto handle
marshalling the tokens and reading and writing the correct headers.

The best way to start is to grab the Ker ber osHt t pd i ent . j ava file in examples and try and get it to
work. There are alot of issues that can happen but if lucky it'll work without too much of a problem.
It should also provide some output to debug with.

In Windows it should default to using the logged in credentias; this can be overridden by using
'kinit' e.g. $JAVA_HOVE\ bi n\ ki ni t testuser @\D. EXAMPLE. NET, Which is very helpful for testing and
debugging issues. Removethe cachefile created by kinit to revert back to the windows K erberos cache.

Make sureto list domai n_r eal ns inthekr bs. conf file. Thisisamajor source of problems.

4.8.2. GSS/Java Kerberos Setup

This documentation assumes you are using Windows but much of the information applies to Unix as
well.

The org.ietf.jgss classes have lots of possible configuration parameters, mainly in the
krb5. conf /krb5.ini file. Some more info on the format at http://web.mit.edu/kerberos/krb5-1.4/
krb5-1.4.1/doc/krb5-admin/krb5.conf.html.

33

http://web.mit.edu/kerberos/krb5-1.4/krb5-1.4.1/doc/krb5-admin/krb5.conf.html
http://web.mit.edu/kerberos/krb5-1.4/krb5-1.4.1/doc/krb5-admin/krb5.conf.html

HTTP authentication

4.8.3. | ogi n. conf file

The following configuration is a basic setup that works in Windows XP against both 11 S and JBoss
Negot i at i on modules.

The system property j ava. security. auth. | ogi n. confi g can be usedto point at thel ogi n. conf file.

I ogi n. conf content may look like the following:

com sun. security.jgss.login {
com sun. security. aut h. nodul e. Krb5Logi nModul e required client=TRUE useTi cket Cache=tr ue;

be

com sun.security.jgss.initiate {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required client=TRUE useTi cket Cache=tr ue;

I8

com sun. security.jgss. accept {
com sun. security. aut h. nodul e. Krb5Logi nModul e required client=TRUE useTi cket Cache=tr ue;

e

4.8.4. krb5. conf / krbs.ini file

If unspecified, the system default will be used. Override if needed by setting the system property
java. security. krb5. conf to point to acustom kr b5. conf file.

krb5. conf content may look like the following:

[1'i bdefaul ts]
defaul t _real m = AD. EXAMPLE. NET
udp_preference_limt =1
[real ns]
AD. EXAMPLE. NET = {
kdc = KDC. AD. EXAMPLE. NET
}
[domai n_r eal ns]
. ad. exanpl e. net =AD. EXAMPLE. NET
ad. exanpl e. net =AD. EXAMPLE. NET

4.8.5. Windows Specific configuration

To adlow Windows to wuse the «current user's tickets, the system property
javax. security. aut h. useSubj ect CredsOnl y must be set to f al se and the Windows registry key
al | owt gt sessi onkey should be added and set correctly to allow session keysto be sent in the Kerberos
Ticket-Granting Ticket.

On the Windows Server 2003 and Windows 2000 SP4, here is the required registry setting:

HKEY_LOCAL_MACHI NE\ Syst eml Current Control Set\ Control \ Lsa\ Ker ber os\ Par anet er s
Val ue Nane: all owt gt sessi onkey

Val ue Type: REG DWORD

Val ue: 0x01

34

HTTP authentication

Here isthe location of the registry setting on Windows XP SP2:

HKEY_LOCAL_MACHI NE\ Syst eml Curr ent Cont r ol Set\ Control \ Lsa\ Ker ber os\
Val ue Nare: al | owt gt sessi onkey

Val ue Type: REG DWORD

Val ue: 0x01

35

Chapter 5. Fluent API

5.1. Easy to use facade API

Asof version of 4.2 HttpClient comes with an easy to use facade APl based on the concept of afluent
interface. Fluent facade API exposesonly the most fundamental functionsof HttpClient andisintended
for simple use cases that do not require the full flexibility of HttpClient. For instance, fluent facade
API relieves the users from having to deal with connection management and resource deallocation.

Here are several examples of HTTP requests executed through the HC fluent API

/] Execute a CGET with tinmeout settings and return response content as String.
Request . Get ("http://sonmehost/")

. connect Ti neout (1000)

. socket Ti meout (1000)

.execute().returnContent().asString();

/] Execute a POST with the 'expect-continue' handshake, using HTTP/ 1.1,
/1 containing a request body as String and return response content as byte array.
Request . Post ("http://sonmehost/ do-stuff")
. useExpect Cont i nue()
.version(H tpVersion. HTTP_1_1)
.bodyString("lnmportant stuff", ContentType. DEFAULT_TEXT)
.execute().returnContent().asBytes();

/] Execute a POST with a custom header through the proxy containing a request body
// as an HTML form and save the result to the file
Request . Post ("http://sonehost/sone-forni)
. addHeader (" X- Cust om header", "stuff")
.vi aProxy(new Htt pHost (" nyproxy", 8080))
. bodyFor n{ Form forn{) . add(" user nane", "vip").add("password", "secret").build())
.execut e().saveContent(new File("result.dunmp"));

One can also use Execut or directly in order to execute requests in a specific security context whereby
authentication details are cached and re-used for subsequent requests.

Execut or executor = Executor.new nstance()
.aut h(new Htt pHost ("sonehost"), "usernane", "password")
.aut h(new Htt pHost (" nmyproxy", 8080), "usernane", "password")
.aut hPreenpti ve(new Htt pHost (" myproxy", 8080));

execut or. execut e(Request . Get ("http://sonmehost/"))
.returnContent ().asString();

execut or. execut e(Request . Post ("http://somehost/do-stuff")
. useExpect Cont i nue()
.bodyString("Inportant stuff", ContentType. DEFAULT_TEXT))
.returnContent ().asString();

36

Fluent API

5.1.1. Response handling

The fluent facade APl generally relieves the users from having to deal with connection management
and resource deallocation. In most cases, though, this comes at a price of having to buffer content of
response messages in memory. It is highly recommended to use ResponseHand! er for HT TP response
processing in order to avoid having to buffer content in memory.

Docunent result = Request.Get("http://sonehost/content")
. execut e() . handl eResponse(new ResponseHand| er <Docunent >() {

publ i c Document handl eResponse(final HttpResponse response) throws | OException {
St at usLi ne statusLine = response. get St at usLi ne();
HtpEntity entity = response.getEntity();
if (statusLine. get StatusCode() >= 300) {
t hrow new Ht t pResponseExcepti on(
st at usLi ne. get St at usCode(),
st at usLi ne. get ReasonPhrase());
}
if (entity == null) {
throw new C i ent Protocol Excepti on("Response contains no content");
}
Documnent Bui | der Fact ory dbfac = Docunent Bui | der Fact ory. newl nst ance() ;
try {
Docunent Bui | der docBui | der = dbf ac. newDocunent Bui | der () ;
Cont ent Type content Type = Content Type. get Or Defaul t (entity);
if (!contentType. equal s(Content Type. APPLI CATI ON_XM.)) {
throw new Cl i ent Prot ocol Excepti on("Unexpected content type:" +
cont ent Type) ;

}
String charset = contentType. get Charset();
if (charset == null) {

charset = HTTP. DEFAULT_CONTENT_CHARSET;
}

return docBuil der. parse(entity.getContent(), charset);
} catch (ParserConfigurati onException ex) {
throw new |11 egal St at eExcepti on(ex);
} catch (SAXException ex) {
t hrow new C i ent Prot ocol Excepti on(" Ml forned XML docunent"”, ex);

});

37

Chapter 6. HTTP Caching

6.1. General Concepts

HttpClient Cache provides an HTTP/1.1-compliant caching layer to be used with HttpClient--the Java
equivalent of abrowser cache. Theimplementation followsthe Chain of Responsibility design pattern,
where the caching HttpClient implementation can serve a drop-in replacement for the default non-
caching HttpClient implementation; requeststhat can be satisfied entirely from the cache will not result
inactual origin requests. Stale cache entries are automatically validated with the origin where possible,
using conditional GETs and the If-Modified-Since and/or If-None-Match request headers.

HTTP/1.1 caching in general is designed to be semantically transparent; that is, a cache should not
change the meaning of the request-response exchange between client and server. As such, it should be
safe to drop a caching HttpClient into an existing compliant client-server relationship. Although the
caching moduleis part of the client from an HTTP protocol point of view, the implementation aimsto
be compatible with the requirements placed on a transparent caching proxy.

Finally, caching HttpClient includes support the Cache-Control extensions specified by RFC 5861
(stale-if-error and stale-while-revalidate).

When caching HttpClient executes a request, it goes through the following flow:

1. Check the request for basic compliance with the HTTP 1.1 protocol and attempt to correct the
request.

2. Flush any cache entries which would be invalidated by this request.

3. Determine if the current request would be servable from cache. If not, directly pass through the
reguest to the origin server and return the response, after caching it if appropriate.

4. If it was aacache-servable request, it will attempt to read it from the cache. If it isnot in the cache,
call the origin server and cache the response, if appropriate.

5. If the cached response is suitable to be served as a response, construct a BasicHttpResponse
containing a ByteArrayEntity and return it. Otherwise, attempt to revalidate the cache entry against
the origin server.

6. In the case of a cached response which cannot be revalidated, call the origin server and cache the
response, if appropriate.

When caching HttpClient receives aresponse, it goes through the following flow:
1. Examining the response for protocol compliance
2. Determine whether the response is cacheable

3. If it is cacheable, attempt to read up to the maximum size alowed in the configuration and store
it in the cache.

4. If the response is too large for the cache, reconstruct the partially consumed response and return
it directly without caching it.

Itisimportant to note that caching HitpClientisnot, itself, adifferent implementation of HttpClient, but
that it works by inserting itself as an additonal processing component to the request execution pipeline.

38

HTTP Caching

6.2. RFC-2616 Compliance

We believe HttpClient Cache is unconditionally compliant with RFC-2616 [http://www.ietf.org/
rfc/rfc2616.txt]. That is, wherever the specification indicates MUST, MUST NOT, SHOULD, or
SHOULD NOT for HTTP caches, the caching layer attempts to behave in away that satisfies those
requirements. This means the caching module won't produce incorrect behavior when you drop it in.

6.3. Example Usage

This is a simple example of how to set up a basic caching HttpClient. As configured, it will store
a maximum of 1000 cached objects, each of which may have a maximum body size of 8192 bytes.
The numbers selected here are for example only and not intended to be prescriptive or considered as
recommendations.

CacheConfig cacheConfig = CacheConfig. custom()
. set MaxCacheEnt ri es(1000)
. set MaxQbj ect Si ze(8192)
Lbui I d();
Request Confi g request Config = Request Confi g. cust on()
. set Connect Ti meout (30000)
. set Socket Ti neout (30000)
Lbuild();
Cl oseabl eHtt pCl i ent cachingCient = CachingHttpCients.customn()
. set CacheConf i g(cacheConfi g)
. set Def aul t Request Confi g(request Confi g)
Lbui I d();

Ht t pCacheCont ext context = HttpCacheContext.create();
HttpGet httpget = new H tpGet("http://ww. mydomai n. conf content/");
Cl oseabl eHt t pResponse response = cachi ngd ient. execute(httpget, context);
try {
CacheResponseSt at us responseSt atus = cont ext. get CacheResponseSt at us() ;
switch (responseStatus) {
case CACHE HIT:
System out. println("A response was generated fromthe cache with " +
"no requests sent upstreant');
br eak;
case CACHE MODULE_RESPONSE:
System out. println("The response was generated directly by the " +
"cachi ng nodul e");
br eak;
case CACHE_M SS:
System out. println("The response cane from an upstream server");
br eak;
case VAL| DATED:
System out. println("The response was generated fromthe cache " +
"after validating the entry with the origin server");
br eak;
}
} finally {
response. cl ose();

}

6.4. Configuration

The caching HttpClient inherits al configuration options and parameters of the default non-caching
implementation (this includes setting options like timeouts and connection pool sizes). For caching-

39

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

HTTP Caching

specific configuration, you can provide a CacheConfi g instance to customize behavior across the
following areas:

Cache size. If the backend storage supports these limits, you can specify the maximum number of
cache entries as well as the maximum cacheabl e response body size.

Public/private caching. By default, the caching module considers itself to be a shared (public) cache,
and will not, for example, cache responses to requests with Authorization headers or responses
marked with "Cache-Control: private". If, however, the cache is only going to be used by onelogical
"user" (behaving similarly to abrowser cache), then you will want to turn off the shared cache setting.

Heuristic caching.Per RFC2616, a cache MAY cache certain cache entries even if no explicit cache
control headers are set by the origin. This behavior is off by default, but you may want to turn thison
if you are working with an origin that doesn't set proper headers but where you still want to cache the
responses. Y ou will want to enable heuristic caching, then specify either a default freshness lifetime
and/or afraction of the time since the resource was last modified. See Sections 13.2.2 and 13.2.4 of
the HTTP/1.1 RFC for more details on heuristic caching.

Background validation. The cache module supports the stale-while-revalidate directive of RFC5861,
which alows certain cache entry revalidations to happen in the background. Y ou may want to tweak
the settings for the minimum and maximum number of background worker threads, as well as the
maximum time they can be idle before being reclaimed. Y ou can also control the size of the queue
used for revalidations when there aren't enough workers to keep up with demand.

6.5. Storage Backends

The default implementation of caching HttpClient stores cache entries and cached response bodiesin
memory inthe VM of your application. While this offers high performance, it may not be appropriate
for your application due to the limitation on size or because the cache entries are ephemeral and don't
survive an application restart. The current release includes support for storing cache entries using
EhCache and memcached implementations, which allow for spilling cache entries to disk or storing
them in an external process.

If none of those options are suitable for your application, it is possible to provide your own
storage backend by implementing the HttpCacheStorage interface and then supplying that to caching
HttpClient at construction time. In this case, the cache entries will be stored using your scheme but
you will get to reuse all of thelogic surrounding HTTP/1.1 compliance and cache handling. Generally
speaking, it should be possible to create an HttpCacheStorage implementation out of anything that
supports akey/value store (similar to the Java Map interface) with the ability to apply atomic updates.

Finaly, with some extra efforts it's entirely possible to set up a multi-tier caching hierarchy; for
example, wrapping an in-memory caching HttpClient around one that stores cache entries on disk or
remotely in memcached, following a pattern similar to virtual memory, L1/L 2 processor caches, etc.

40

Chapter 7. Advanced topics

7.1. Custom client connections

In certain situations it may be necessary to customize the way HT TP messages get transmitted across
the wire beyond what is possible using HTTP parameters in order to be able to deal non-standard,
non-compliant behaviours. For instance, for web crawlersit may be necessary to force HttpClient into
accepting malformed response heads in order to salvage the content of the messages.

Usually the process of plugging in a custom message parser or a custom connection implementation
involves several steps.

» Provide a custom Li neParser / LineFormatter interface implementation. Implement message
parsing / formatting logic as required.

cl ass M/Li neParser extends BasicLi neParser {

@verride
publ i ¢ Header parseHeader (
Char ArrayBuffer buffer) throws ParseException {
try {
return super. parseHeader (buffer);
} catch (ParseException ex) {
/'l Suppress ParseException exception
return new Basi cHeader (buffer.toString(), null);

* Provide acustom H: t pConnect i onFact or y implementation. Replace default request writer and / or
response parser with custom ones as required.

Ht t pConnect i onFact or y<Ht t pRout e, ManagedHtt pd i ent Connecti on> connFactory =
new ManagedHtt pd i ent Connecti onFact or y(
new Def aul t Ht t pRequest Wi terFactory(),
new Def aul t Ht t pResponsePar ser Fact or y(
new MyLi neParser(), new DefaultHttpResponseFactory()));

« Configure HttpClient to use the custom connection factory.

Pool i ngHt t pdl i ent Connecti onManager cm = new Pool i ngHt t pCl i ent Connect i onManager (
connFactory);
Cl oseabl eHttpClient httpclient = Htpdients.custom()
. set Connect i onManager (cm
.build();

7.2. Stateful HTTP connections

While HTTP specification assumes that session state information is always embedded in HTTP
messages in the form of HTTP cookies and therefore HTTP connections are always stateless, this
assumption does not always hold truein real life. There are cases when HTTP connections are created
with a particular user identity or within a particular security context and therefore cannot be shared

41

Advanced topics

with other users and can be reused by the same user only. Examples of such stateful HT TP connections
are NTLMauthenticated connections and SSL connections with client certificate authentication.

7.2.1. User token handler

HttpClient relies on User TokenHandl er interface to determine if the given execution context is user
specific or not. The token object returned by this handler is expected to uniquely identify the current
user if the context is user specific or to be null if the context does not contain any resources or details
specific to the current user. The user token will be used to ensure that user specific resources will not
be shared with or reused by other users.

The default implementation of the User TokenHandl er interface uses an instance of Principal classto
represent a state object for HTTP connections, if it can be obtained from the given execution context.
Def aul t User TokenHandl er will use the user principal of connection based authentication schemes
such as NTLMor that of the SSL session with client authentication turned on. If both are unavailable,
null token will be returned.

Cl oseableHttpClient httpclient = HtpCients.createDefault();

Htt pCl i ent Cont ext context = HtpCientContext.create();

Htt pGet httpget = new H tpGet("http://I|ocal host:8080/");

Cl oseabl eHt t pResponse response = httpclient.execute(httpget, context);

try {
Principal principal = context.getUserToken(Principal.class);
System out . println(principal);

} finally {

response. cl ose();

}

Users can provide a custom implementation if the default one does not satisfy their needs:

User TokenHandl er user TokenHandl er = new User TokenHandl er () {

public nject getUserToken(HttpContext context) ({
return context.getAttribute("my-token");

}

b

Cl oseabl eHttpClient httpclient = HtpCients. customn()
. set User TokenHandl er (user TokenHandl er)
.bui 1 d();

7.2.2. Persistent stateful connections

Please note that a persistent connection that carries a state object can be reused only if the same state
object is bound to the execution context when requests are executed. So, it isreally important to ensure
the either same context is reused for execution of subsequent HT TP requests by the same user or the
user token is bound to the context prior to request execution.

Cl oseableHttpClient httpclient = HtpCients.createDefault();

Htt pCl i ent Context contextl = H tpCientContext.create();

Htt pGet httpgetl = new HttpGet ("http://|ocal host: 8080/");

Cl oseabl eHt t pResponse responsel = httpclient.execute(httpgetl, contextl);

try {
HttpEntity entityl = responsel.getEntity();
} finally {

42

Advanced topics

responsel. cl ose();

}

Princi pal principal = contextl.getUserToken(Principal.class);

Htt pl i ent Cont ext context2 = H tpC ientContext.create();

cont ext 2. set User Token(pri nci pal) ;

Htt pGet httpget2 = new HttpGet("http://Iocal host: 8080/");

Cl oseabl eHt t pResponse response2 = httpclient.execute(httpget2, context?2);

try {
HtpEntity entity2 = response2.getEntity();
} finally {

response2. cl ose();

}

7.3. Using the FutureRequestExecutionService

Using the FutureRequestExecutionService, you can schedule http calls and treat the response as a
Future. This is useful when e.g. making multiple calls to a web service. The advantage of using the
FutureRequestExecutionServiceisthat you can use multipl e threadsto schedul e requests concurrently,
set timeouts on the tasks, or cancel them when aresponse is no longer necessary.

FutureRequestExecutionService wraps the request with a HttpRequestFutureTask, which extends
FutureTask. This class alows you to cancel the task as well as keep track of various metrics such as
request duration.

7.3.1. Creating the FutureRequestExecutionService

The constructor for the futureRequestExecutionService takes any existing httpClient instance and an
ExecutorService instance. When configuring both, it is important to align the maximum number of
connections with the number of threads you are going to use. When there are more threads than
connections, the connections may start timing out because there are no available connections. When
there are more connections than threads, the futureRequestExecutionService will not use all of them

HtpOient httpdient = HtpdientBuilder.create().set MaxConnPer Rout e(5). build();
Execut or Servi ce execut or Servi ce = Execut or s. newri xedThr eadPool (5) ;
Fut ur eRequest Execut i onSer vi ce f ut ureRequest Executi onService =

new Fut ur eRequest Execut i onServi ce(httpdient, executor Service);

7.3.2. Scheduling requests

To schedule a request, simply provide a HttpUriRequest, HttpContext, and a ResponseHandler.
Because the request is processed by the executor service, a ResponseHandler is mandatory.

private final class kidoki Handl er inplenments ResponseHandl er <Bool ean> {
publ i ¢ Bool ean handl eResponse(
final HttpResponse response) throws CientProtocol Exception, |OException {
return response. get St at usLi ne(). get St at usCode() == 200;

}

Ht t pRequest Fut ur eTask<Bool ean> task = futureRequest Executi onServi ce. execut e(

new Htt pGet ("http://ww. googl e.cont'), HttpdientContext.create(),

new OKi doki Handl er());
/1 blocks until the request conplete and then returns true if you can connect to Googl e
bool ean ok=t ask.get();

43

Advanced topics

7.3.3. Canceling tasks

Scheduled tasks may be cancelled. If the task is not yet executing but merely queued for execution,
it simply will never execute. If it is executing and the maylnterruptlfRunning parameter is set to
true, abort() will be called on the request; otherwise the response will simply be ignored but the
request will be allowed to complete normally. Any subsequent calls to task.get() will fail with
an lllegal StateException. 1t should be noticed that canceling tasks merely frees up the client side
resources. The request may actually be handled normally on the server side.

task. cancel (true)
task.get() // throws an Exception

7.3.4. Callbacks

Instead of manually calling task.get(), you can aso use a FutureCallback instance that gets callbacks
when the request completes. Thisisthe sameinterface asis used in HttpAsyncClient

private final class MyCall back inpl enents FutureCall back<Bool ean> {

public void failed(final Exception ex) {
/1 do sonet hi ng

}

public void conpleted(final Boolean result) {
/1 do somet hi ng

}

public void cancelled() {
/1 do sonething
}
}

Ht t pRequest Fut ur eTask<Bool ean> task = futureRequest Executi onServi ce. execut e(
new Htt pGet ("http://ww. googl e.cont'), HttpCdientContext.create(),
new Oki doki Handl er (), new MyCal | back())

7.3.5. Metrics

FutureRequestExecutionService is typically used in applications that make large amounts of web
servicecalls. Tofacilitate e.g. monitoring or configuration tuning, the FutureRequestExecutionService
keeps track of several metrics.

Each HttpRequestFutureTask provides methods to get the time the task was scheduled, started, and
ended. Additionally, request and task duration are available aswell. These metricsare aggregated in the
FutureRequestExecutionService in a FutureRegquestExecutionMetrics instance that may be accessed
through FutureRequestExecutionService.metrics().

t ask. schedul edTinme() // returns the tinmestanp the task was schedul ed
task.startedTine() // returns the tinmestanp when the task was started

task. endedTinme() // returns the tinestanp when the task was done executing
task.requestDuration // returns the duration of the http request

task.taskDuration // returns the duration of the task fromthe nonment it was schedul ed

Fut ur eRequest Execut i onMetrics netrics = futureRequest ExecutionService.netrics()
nmetrics. get Acti veConnectionCount() // currently active connections

Advanced topics

metri
metri
netri
metri
metri
netri
metri
metri
netri

Cs.
Cs.
Cs.
Cs.
Cs.
Cs.
Cs.
Cs.
Cs.

get Schedul edConnecti onCount (); // currently schedul ed connecti ons

get Successf ul Connecti onCount (); // total nunber of successful requests
get Successf ul Connecti onAver ageDuration(); // average request duration

get Fai | edConnectionCount(); // total nunmber of failed tasks

get Fai | edConnecti onAverageDuration(); // average duration of failed tasks
get TaskCount (); // total nunmber of tasks schedul ed

get Request Count (); // total nunber of requests

get Request Aver ageDuration(); // average request duration

get TaskAver ageDuration(); // average task duration

45

	HttpClient Tutorial
	Table of Contents
	Preface
	1. HttpClient scope
	2. What HttpClient is NOT

	Chapter 1. Fundamentals
	1.1. Request execution
	1.1.1. HTTP request
	1.1.2. HTTP response
	1.1.3. Working with message headers
	1.1.4. HTTP entity
	1.1.4.1. Repeatable entities
	1.1.4.2. Using HTTP entities

	1.1.5. Ensuring release of low level resources
	1.1.6. Consuming entity content
	1.1.7. Producing entity content
	1.1.7.1. HTML forms
	1.1.7.2. Content chunking

	1.1.8. Response handlers

	1.2. HttpClient interface
	1.2.1. HttpClient thread safety
	1.2.2. HttpClient resource deallocation

	1.3. HTTP execution context
	1.4. HTTP protocol interceptors
	1.5. Exception handling
	1.5.1. HTTP transport safety
	1.5.2. Idempotent methods
	1.5.3. Automatic exception recovery
	1.5.4. Request retry handler

	1.6. Aborting requests
	1.7. Redirect handling

	Chapter 2. Connection management
	2.1. Connection persistence
	2.2. HTTP connection routing
	2.2.1. Route computation
	2.2.2. Secure HTTP connections

	2.3. HTTP connection managers
	2.3.1. Managed connections and connection managers
	2.3.2. Simple connection manager
	2.3.3. Pooling connection manager
	2.3.4. Connection manager shutdown

	2.4. Multithreaded request execution
	2.5. Connection eviction policy
	2.6. Connection keep alive strategy
	2.7. Connection socket factories
	2.7.1. Secure socket layering
	2.7.2. Integration with connection manager
	2.7.3. SSL/TLS customization
	2.7.4. Hostname verification

	2.8. HttpClient proxy configuration

	Chapter 3. HTTP state management
	3.1. HTTP cookies
	3.2. Cookie specifications
	3.3. Choosing cookie policy
	3.4. Custom cookie policy
	3.5. Cookie persistence
	3.6. HTTP state management and execution context

	Chapter 4. HTTP authentication
	4.1. User credentials
	4.2. Authentication schemes
	4.3. Credentials provider
	4.4. HTTP authentication and execution context
	4.5. Caching of authentication data
	4.6. Preemptive authentication
	4.7. NTLM Authentication
	4.7.1. NTLM connection persistence

	4.8. SPNEGO/Kerberos Authentication
	4.8.1. SPNEGO support in HttpClient
	4.8.2. GSS/Java Kerberos Setup
	4.8.3. login.conf file
	4.8.4. krb5.conf / krb5.ini file
	4.8.5. Windows Specific configuration

	Chapter 5. Fluent API
	5.1. Easy to use facade API
	5.1.1. Response handling

	Chapter 6. HTTP Caching
	6.1. General Concepts
	6.2. RFC-2616 Compliance
	6.3. Example Usage
	6.4. Configuration
	6.5. Storage Backends

	Chapter 7. Advanced topics
	7.1. Custom client connections
	7.2. Stateful HTTP connections
	7.2.1. User token handler
	7.2.2. Persistent stateful connections

	7.3. Using the FutureRequestExecutionService
	7.3.1. Creating the FutureRequestExecutionService
	7.3.2. Scheduling requests
	7.3.3. Canceling tasks
	7.3.4. Callbacks
	7.3.5. Metrics

